Invariants of Noise in Cyber-Physical Systems Components

2017;
: pp. 63 - 70
Authors:
1
Lviv Polytechnic National University

The article is devoted to the invariant of internal electrical noise of electronic devices, which are components of cyber-physical systems. Time series of noise signals show chaotic behavior. Invariants are based on the autocorrelation function of dynamic time series. Insignificant differences on the micro-level devices lead to changes in the dynamics of time series. It is shown that the form of the autocorrelation function is unchanged for each electronic device of the cyber-physical system. The dynamic authentication algorithm has been developed, which consists of choosing a range of time series, defining and calculating invariants, making decisions about authentication. The result of the operation of the algorithm can be transferred to the executive mechanism, depending on the practical problems in cyber-physical systems. Also for the pseudorandom sequence of the embedded program generator, the following values are predicted on the basis of invariants. Estimated errors are calculated.

[1] Jakob Hasse, Thomas Gloe, Martin Beck Forensic Identification of GSM Mobile Phones [Electronic resource]. – Access: http://www.dence.de /publications/Hasse13_GSMMobilePhone Identification.pdf (online).

[2] Toshiba Develops New Chip Authentication Technology Using Transistor Noise [Electronic resource]. – Access: http:// www.toshiba.co.jp/ rdc/rd/detail_e/e1506_03.html, 10 August 2016 (online).

[3] Князев А. Д. Элементы теории и практики обеспечения электромагнитной совместимости радиоэлектронных средств. – М.:Радио и связь, 1984. – 336 с.

[4] Чумаченко А., Идентификация цифровых микрофонов по неидеальностям тракта записи / Д. Рублёв, А. Чумаченко, О. Макаревич, В. Фёдоров // Известия ЮФУ, Технические науки, Тематический выпуск “Информационная безопасность”, Таганрог, 2007. – №8. – С. 84–92.

[5] Rybalsky O. Signalogramm Structure and Universality of the Fractal Approach to the Development of the Phonoscope Assessment Toolkit / V. Zhuravel, O. Rybalsky, V. Solovyev // Informatics & Mathematical Methods in Simulation. – 2013. – Vol. 3. – Is. 3. – P. 225–232.

[6] Nyemkova E. Technique of Measuring of Identification Parameters of Audio Recording Device / E. Nyemkova, V. Chaplyha, Z. Shandra // Selected Papers of the 18 International Conference on Information Technology for Practice 2015. – Octouber 2015, Ostrava, Czech Republic. – P. 209–218.

[7] Немкова О. Ідентифікація елементів кібер-фізичних систем за шумовими характеристиками / О. Немкова, В. Чаплига, З. Шандра // Матеріали V Міжнародної науково-технічної конференції Захист Інформації і Безпека Інформаційних систем. – Львів, 2016. – С. 158–159.

[8] Diligenska, A. N Identification of control objects, Samara State Technical University publishing, 2009, 220 p.

[9] Loskutov, A. (2009) Lectures time series analysis, [Online], Available: http://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf [20 Aug 2017].

[10] Patra, J.C. (1999) ‘Identification of nonlinear dynamic systems using functional link artificial neural networks’. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). Vol. 29, Is/ 2, pp. 254–262.

[11] Patra, J.C. and Kot A.C. (2002) ‘Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks’. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). Vol. 32, Is/ 4, pp. 505–511.

[12] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems, Ney York, 1977.

[13] W. Ebeling, Stochastis Theorie nichtlinearer irreversibler Prozesser, Rostock, 1977.

[14] A. Mehrotra, “Simulation and Modelling Techniques for Noise in Radio Frequency Integrated Circuits”, University of California at Berkeley, 1999.

[15] Dyvak M., Kasatkina N., Pukas A., Padletska N. ‘Spectral analysis of information signal in the task of identification the recurrent laryngeal nerve during thyroid surgery’, Proceedings of the 13th International Workshop “Computational Problems of Electrical Engineering”, Grubow, Poland, 2012, p. 55.

[16] Dyvak M., Padletska N., Pukas, A., Kozak O. ‘Identification the Recurrent Laryngeal Nerve by the Autocorrelation Function of Signal as Reaction on the Stimulation of Tissues in Surgical Wound’, Proceedings of the XIIth International Conference CADSM’2013, Lviv, Ukraine, p. 89–92.

[17] Loskutov A., Kotlyarov O. ‘Local approximation: A new method of forecasting of economic indexes’. Currency Stag, No. 11, 2008, p. 8–13.

[18] Kuzovlev, Yu. E. ‘Why nature needs 1/f noise’. Physics- Uspekhi, Vol. 58, no. 7, 2015, pp. 719–729.

[19] Nikulchev, E. B. Identification of dynamic systems based on symmetry of reconstructed attractors, Moscow, Moscow state university of printing publishing, 2010.

[20] Petrovich, V. N. ‘Identification of parameters of mathematical models of dynamic control system’. Artificial Intelligent, Іs. 4, 2011, pp. 343–349.