Using Automatic Segmentation Using the Harmonious Field to Recognize the Image of Teeth in the Jaw

: pp. 93 - 99
Lviv Polytechnic National University
Lviv Polytechnic National University

An important preliminary procedure in automated orthodontics is the precise segmentation of the teeth from the 3D model of the jaw, which should include as few manual operations as possible. Motivated by ultramodern general methods of mesh segmentation, which have adopted the theory of harmonic field to identify segments, this article investigates a new, aimed at dentistry structure of dental mesh segmentation. Thanks to a specially designed weighing scheme and a priori knowledge strategy for managing harmonic constraints, this method can effectively determine the boundaries of the teeth.

  1. K. Wu, L. Chen, J. Li, and Y. Zhou, “Tooth segmentation on dental meshes using morphologic skeleton,” Computers and Graphics, vol. 38, no. 1, pp. 199–211, 2014.
  2. L. Fan, L. Liu, and K. Liu, “Paintmeshcutting,” ComputerGraphicsForum, vol. 30, no. 2, pp. 603–611, 2011.
  3. Rahul Venkatram (2000), “3shape”, available at: (accessed 1 October 2020).
  4. Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, “Meshs cissoring with minima rule and part salience,” Computer Aided Geometric Design, vol. 22, no. 5, pp. 444–465, 2005.
  5. Z. Ji, L. Liu, and Z. Chen, “Easy mesh cutting,” in Computer Graphics Forum, vol. 25, pp. 283–291, Blackwell, London, UK,2006.
  6. S. Katzand A. Tal, “Hierarchical mesh decomposition using fuzzy clustering and cuts,” ACM Transactions on Graphics, vol.22, no. 3, pp. 954–961, 2003.
  7. Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin, "Rapid and effective segmentation of 3D models using random walks,"ComputerAidedGeometricDesign, vol. 26, no. 6, pp. 665–679,2009.
  8. L. Shapira, A. Shamir, and D. Cohen-Or, "Consistent mesh partitioning and skeletonisation using the shape diameter function,“VisualComputer, vol. 24, no. 4, pp. 249–259, 2008.
  9. M.Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh segmentation based on fitting primitives,” Visual Computer, vol.22, no. 3, pp. 181–193, 2006.
  10. A. F. Koschan, “Perception-based 3D triangle mesh segmentation using fast marching watersheds,” in Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition, vol. 2, pp. II- 27—II-32, IEEE, June 2003.
  11. A. Shamir, “A survey on mesh segmentation techniques,” Computer Graphics Forum, vol. 27, no. 6, pp. 1539–1556, 2008.
  12. Sheng-hui Liao, Shi-jian Liu, Bei-ji Zou, Xi Ding, Ye Liang, and Jun-hui Huang, “Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields” vol. 38, no. 1, 2014.
  13. Lisa Avila, Charles Law (1998), “The Visualization Toolkit An Object-Oriented Approach to 3D Graphics”, available at: (accessed 1 October 2020).
  14. Y. Kumar, R. Janardan, and B. Larson, “Automatic feature identification in dental meshes,” Computer- Aided Design and Applications, vol. 9, no. 6, pp. 747–769, 2012.
  15. Pierre Zoppitelli (2008), “Eigen”, available at: (accessed 1 October 2020).
  16. Y.Chen, T. A. Davis,W.W. Hager, and S. Rajamanickam, “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate,” ACM Transactionson Mathematical Software, vol. 35, no. 3, article 22, 2008.
  17. T. A. Davis, User Guide for CHOLMOD: A Sparse Cholesky Factorization and Modification Package, Department of Computer, Information Science and Engineering, University of Florida, Gainesville, Fla, USA, 2014. 
  18. Alban Denoyel (2012), “3D models”, available at: (accessed 1 Octo