Еlectrodeposition of silver nanoparticles on siliconesurface in dimethylformamide solutions of (NH4)[Ag(CN)2]

2020;
: 9-13
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The article presents the results of studies of electrochemical deposition of silver nanoparticles (AgNPs) on the silicon surface in dimethylformamide solutions of 0.025M; 0.05M; 0.1M (NH4)[Ag(CN)2]. Combination of a pulsed electrolysis mode and an organic aprotic solvent medium (DMF) ensures the formation of 50-150 nm spherical AgNPs with uniform distribution over the silicon surface. It is shown that the main factors influencing the morphology and size of silver nanoparticles are the value of the cathode potential, the concentration of ions [Ag(CN)2]- and the duration of electrolysis. With their increase, the size of the nanoparticles and the density of filling the substrate increases. It was found that the deposited AgNPs on the surface of the substrate are activators of chemical etching of the latter to give porous silicon.

1. Yakimchuk, D. V., Kaniukov, E. Y., Lepeshov, S., Bundyukova, V. D., Demyanov, S. E., Arzumanyanm, G. M., &Stranik, O. (2019). Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. Journal of Applied Physics, 126(23), 233105.
https://doi.org/10.1063/1.5129207
2. Ji, X., Wang, H., Song, B., Chu, B., & He, Y. (2018). Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry, 6, 38.
https://doi.org/10.3389/fchem.2018.00038
3. Myndrul, V., Viter, R., Savchuk, M., Shpyrka, N., Erts, D., Jevdokimovs, D.,  Iatsunskyi, I. (2018). Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 102, 661-667.
https://doi.org/10.1016/j.bios.2017.11.048
4. Myndrul, V., Viter, R., Savchuk, M., Koval, M., Starodub, N., Silamiķelis, V., Iatsunskyi, I. (2017). Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta, 175, 297-304.
https://doi.org/10.1016/j.talanta.2017.07.054
5. Boriskina, S. V., Green, M. A., Catchpole, K., Yablonovitch, E., Beard, M. C., Okada, Y.,& Sorger, V. J. (2016). Roadmap on optical energy conversion. Journal of Optics, 18(7), 073004.
https://doi.org/10.1088/2040-8978/18/7/073004
6.Zhang, Y., & Liu, H. (2019). Nanowires for high-efficiency, low-cost solar photovoltaics. Crystals, 9(2), 87.
https://doi.org/10.3390/cryst9020087
7. Nichkalo S., Druzhinin A., Evtukh A., Bratus' O., Steblova O., (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale Research Letters, 12, 106.
https://doi.org/10.1186/s11671-017-1886-2
8. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12(3), 305-309.
https://doi.org/10.23939/chcht12.03.305
9. Shepida, M., Kuntyi, O., Nichkalo, S., Zozulya, G., & Korniy, S. (2019). Deposition of gold nanoparticles via galvanic replacement in DMSO and their influence on formation of silicon nanostructures. Advances in Materials Science and Engineering, 2019.
https://doi.org/10.1155/2019/2629464
10. Kuntyi, О. І., Zozulya, G. I., Shepida, M. V., & Nichkalo, S. I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019(3), 74-82.
https://doi.org/10.32434/0321-4095-2019-124-3-74-82
11. Fukami, K., Kobayashi, K., Matsumoto, T., Kawamura, Y. L., Sakka, T., & Ogata, Y. H. (2008). Electrodeposition of noble metals into ordered macropores in p-type silicon. Journal of The Electrochemical Society, 155(6), D443-D448.
https://doi.org/10.1149/1.2898714
12. Matsumoto, T., Kobayashi, K., Fukami, K., Sakka, T., & Ogata, Y. H. (2009). Electrodeposition behavior of noble metals in ordered macroporous silicon. physica status solidi c, 6(7), 1561-1565.
https://doi.org/10.1002/pssc.200881040
13. Ogata, Y. H., Kobayashi, K., & Motoyama, M. (2006). Electrochemical metal deposition on silicon. Current Opinion in Solid State and Materials Science, 10(3-4), 163-172.
https://doi.org/10.1016/j.cossms.2007.02.001
14. Kuntyi, O., Shepida, M., Dobrovetska, O., Nichkalo, S., Korniy, S., & Eliyashevskyy, Y. (2019). Pulse Electrodeposition of Palladium Nanoparticles onto Silicon in DMSO. Journal of Chemistry, 2019.
https://doi.org/10.1155/2019/5859204
15.Shepida, М. V., Kuntyi, О. І., Dobrovets'ka, О. Y., Kornii, S. А., & Eliyashevs'kyi, Y. І. (2019). Deposition of Gold Nanoparticles onSilicon in the Pulse Mode of Electrolysis in a DMSO Solution. Materials Science, 55(3), 417-423.
https://doi.org/10.1007/s11003-019-00319-7
16. Kuntyi, O. I., Stakhira, P. Y., Cherpak, V. V., Bilan, O. I., Okhremchuk, Y. V., Voznyak, L. Y.,& Hotra, Z. Y. (2011). Electrochemical depositions of palladium on indium tin oxide-coated glass and their possible application in organic electronics technology. Micro & Nano Letters, 6(8), 592-595.
https://doi.org/10.1049/mnl.2011.0249
17. Kelso, M. V., Tubbesing, J. Z., Chen, Q., & Switzer, J. A. (2018). Epitaxial electrodeposition of chiral metal surfaces on silicon (643). Journal of the American Chemical Society, 140(46), 15812-15819.
https://doi.org/10.1021/jacs.8b09108
18. Márquez, K., Staikov, G., & Schultze, J. W. (2003). Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium. Electrochimica acta, 48(7), 875-882.
https://doi.org/10.1016/S0013-4686(02)00781-8
19. Koda, R., Fukami, K., Sakka, T., & Ogata, Y. H. (2012). Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes. Nanoscale research letters, 7(1), 330.
https://doi.org/10.1186/1556-276X-7-330
20. Oskam, G., & Searson, P. C. (2000). Electrochemistry of Gold Deposition on n‐Si (100). Journal of the Electrochemical Society, 147(6), 2199.
https://doi.org/10.1149/1.1393507
21. Sus, L., Okhremchuk, Y., Saldan, I., Kuntyi, O., Reshetnyak, O., & Korniy, S. (2015). Controlled gold deposition by pulse electrolysis. Materials Letters, 139, 296-299.
https://doi.org/10.1016/j.matlet.2014.10.110
22. Han, H., Huang, Z., Lee, W. (2014). Metal-assisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9, 271-304.
https://doi.org/10.1016/j.nantod.2014.04.013
23. Huang, Z., Geyer, N., Werner, P., Boor, J. de, and Gösele, U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285-308.
https://doi.org/10.1002/adma.201001784
24. Ashrafabadi, S., Eshghi, H., (2018). Single-crystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517-524.
https://doi.org/10.1016/j.spmi.2018.06.023
25. Duran, J. M., & Sarangan, A. (2017). Fabrication of ultrahigh aspect ratio silicon nanostructures using self-assembled gold metal-assisted chemical etching. Journal of Micro/Nanolithography, MEMS, and MOEMS, 16(1), 014502.
https://doi.org/10.1117/1.JMM.16.1.014502
26. Rajkumar, K., Pandian, R., Sankarakumar, A., & Rajendra Kumar, R. T. (2017). Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: role of Ag size and electron-scavenging rate on morphology control and mechanism. ACS omega, 2(8), 4540-4547.
https://doi.org/10.1021/acsomega.7b00584
27. Kovacs, A., & Mescheder, U. (2012). Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sensors and Actuators B: Chemical, 175, 179-185.
https://doi.org/10.1016/j.snb.2012.03.006