Рhase vapor–liquid equilibrium for the solutions of dimethyltelluride and dimethylcadmium

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

To describe the vapor-liquid equilibrium in the dimethyltelluride-dimethylcadmium system, we proposed a semi-empirical Wilson model. The parameters of the Wilson model were calculated using the method of iterations by means of the Mathsad 14 software package based on the data obtained by us to measure the temperature dependence of the saturation vapor pressure for high-purity samples of dimethyltelluride, dimethyl cadmium and their equimolecular solution. For the parameters of the Wilson model, the activity coefficients of the solution components, the partition coefficient, the excess solution functions (HE, GE, TSE) were calculated, and isothermal P-X state diagrams for the dimethyltelluride-dimethyl cadmium system were ploted. Based on the results of the calculations, the following conclusions were reached: the existence of molecules association in equimolecular ratio for the dimethyltellur-dimethylcadmium system; the negative deviation of this system from Raoul's law; on the homogeneity of the dimethyltellur-dimethylcadmium solution over the entire concentration and temperature range (280-340 K).

 1. Thompson, H. W., & Linnett, J. W. (1936). The vapour pressures and association of some metallic and non-metallic alkyls. Transactions of the Faraday Society, 32, 681-685. doi:10.1039/tf9363200681
https://doi.org/10.1039/tf9363200681
2. Long, L., & Cattanach, J. (1961). Antoine vapour-pressure equations and heats of vaporization for the dimethyls of zinc, cadmium and mercury. Journal of Inorganic and Nuclear Chemistry, 20(3-4), 340-342. doi: 10.1016/0022-1902(61)80285-6
https://doi.org/10.1016/0022-1902(61)80285-6
3. Efremov, E. A., & Fedorov, V. A. (1975). Temperaturna zalezhnistʹ davlennya nasyshchennoho para dymetylselena i dymetyltellura. Zhurnal fizychnoyi khimiyi, 49 (5), 1336-1337
4. Baev, A. K., & Hubarʹ, YU. A. (1975). Termodynamichni kharakterystyky paroobrazovaniya dymetylselena i dymetyltellura. Trudy khimichnykh ta khimichnykh tekhnolohiy Horʹkivsʹkoho derzhavnoho universytetu, (4), 86-84.
5. Baev, A. K. (1987). Khimiya hazoheterohennykh systemnykh elementoorhanichnykh z'yednanʹ. Minsʹk: Nauka ta tekhnika
6. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin-Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 86(10),1500-1506. doi:10.1134/s003602441210010x
https://doi.org/10.1134/S003602441210010X
7. Gerasimchuk, S. I., Pavlovskii, Y.P., Sobechko, I.B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054
https://doi.org/10.1134/S0036024414030054
8. Herasymchuk, S. I., Melʹnyk, H. V., Sobechko, I. B., Tymnyak, Z. S., & Pavlovsʹkyy, YU. P. (2018). Termodynamika vyprominyuye dymetylkadmiyu, dymetylteluru ta yikh ekvimolekulyarne rozchynennya. Visnyk Natsionalʹnoho universytetu «Lʹvivsʹka
9. Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., & Sergeyev, V. V. (2019). Phase Vapor-Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1-6. doi: 10.23939/ctas2019.02.001
https://doi.org/10.23939/ctas2019.02.001
10. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill Kulagina, T. G. (1988).
11. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002
https://doi.org/10.1021/ja01056a002
12. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg.
13. Naryshkin, D. G. (2016). Khimicheskaya termodinamika s Mathcad. Moskva: RIOR: INFRA-M.
14. Serheyev, V. (2013). Khimichna termodynamika spoluk akrylovoho ryadu. (Dys. dokt. khim.  nauk). Natsionalʹnyy Universytet Ukrayiny "Lʹvivsʹka Politekhnika", Lʹviv.
15. Sergeyev, V. V., Gerasimchuk, S. I., & Pavlovskiy, YU. P. (2019) Termodinamicheskiye funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274
16. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007
https://doi.org/10.23939/chcht12.01.007
17. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x
https://doi.org/10.1134/S003602441711022X
18. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131
https://doi.org/10.23939/chcht09.02.131
19. Belousov, V. P. (1970). Teploty smesheniya zhidkostey. Leningrad: Khimiya.
20. Barclay, I. M., & Butler, J. A. V. (1938). The entropy of solution. Transactions of the Faraday Society, 34, 1445-1454. doi:10.1039/tf9383401445
https://doi.org/10.1039/tf9383401445
21. Hammett, L. P. (1970). Physical organic chemistry: reaction rates equilibria and mechanisms. New York: McGraw-Hill.
22. Starikov, E., & Nordén, B. (2012). Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 538, 118-120. doi: 10.1016/j.cplett.2012.04.028
https://doi.org/10.1016/j.cplett.2012.04.028
23. Leffler, J. E., & Grunwald, E. (1989). Rates and equilibria of organic reactions: as treated by statistical, thermodynamic, and extrathermodynamic methods. Mineola (N.Y.): Dover.