Рrocessing of selected properties of extruded recycled plastics

2020;
: 196-202
1
Lublin University of Technology (Poland)
2
Technical University of Kosice (Slovakia)

The aim of the study is to analyze the physical processing properties and morphology of recycled plastics. The scope of work includes conducting the processing of primary PVC and recycled PVC and testing mechanical properties such as: tensile strength, stress, elongation and impact resistance, hardness. The scope of work also includes shrinkage testing of primary compacts and structural  investigation of the morphology of materials. The technology for producing the recycled composition is based on the extrusion and compression technology of the compositions obtained. The research on the structure of manufactured materials, melt flow index MFI, and macroscopic structure are presented.

 1. Kelvin T. Okamoto. (2003) Microcellular processing. Hanser Publishers, Munich, Germany.
 2. Gomes Estima M M. (2004) A bone tissue engineering strategy based on starch scaffolds and bone marrow cells cultured In a flow perfusion bioreactor. Universidade do Minho, Grupo 3B.
3. Garbacz T. (2004) Effect of selected auxiliary agents on the properties of the surface layer of extruded polyethylene. International Polymer Science and Technology  pp. 31-36.
https://doi.org/10.14314/polimery.2004.023
4. Garbacz T., Tor A (2007) Effect of porophor content on the useful properties of external composites of compositess obtained by foaming extrusion. Polimery, 52, pp. 286-293.
https://doi.org/10.14314/polimery.2007.286
5. Guo M.C., Heuzey M.C., Carreau P.J. (2007). Cell structure and dynamic properties of injection molded polypropylene foams. Polymer Engineering and Science 47, pp. 1070-1081.
https://doi.org/10.1002/pen.20786
 6. Palutkiewicz P., Postawa P. (2016). The investigation of selected properties of the porous moulded parts from talc-filled PP composites. Journal of Cellular Plastics 52, 4, pp. 399-418.
https://doi.org/10.1177/0021955X15576238
7. Garbacz T. (2011) Properties of triple-layered PVC composites synthesized in the micropore coextrusion method. Polimery, 56, pp. 129-134.
https://doi.org/10.14314/polimery.2011.129
8.Garbacz T., Dulebova L. (2013) Porophors during the extrusion process. Chemistry and Chemical Technology, 7, pp. 113-118.
https://doi.org/10.23939/chcht07.01.113
 9. Garbacz T., Dulebova L., Krasinsky V. (2013) Effectiveness of cellular injection molding process. Advances in Science and Technology ,8, 18, pp. 74-80.
https://doi.org/10.5604/20804075.1051260
10. Rachtanapun P., Selke S.E.M., Matuana L.M. (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. Journal of Applied Polymer Science, 88, pp. 2842-2850.
https://doi.org/10.1002/app.12170
11. Tejeda E.H., Sahagún C.Z., González-Núñez R., Rodrigue D. (2005) Morphology and mechanical properties of foamed polyethylene-polypropylene blends. Journal of Cellular Plastics, 41, pp. 417- 435.
https://doi.org/10.1177/0021955X05056959
12. Garbacz T.,  Krasinskyy V. (2012) Title evaluate the effectivesness of the extrusion process. Progresivne Strojarske Technologie a Materialy. PRO-TECH-MA 2012, Košice, Slovakia, 25.06- 27.06. 2012.
13. Tor-Świątek A., Samujło B. (2013) Use of thermovision research to analyze the thermal stability of microcellular extrusion process of poly(vinyl chloride). Maintenance and Reliability, 15, pp. 58-61.
 14. Martial S., Jacques F., Audrey C., Clémence N., Rodier E. (2011). New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, 36, pp. 749-766.
https://doi.org/10.1016/j.progpolymsci.2010.12.004
 15. Urbanczyk L., Alexandre M., Detrembleur Ch. (2010). Extrusion foaming of poly(styrene-coacrylonitrile)/Clay nanocomposites using supercritical CO2, Macromolecural Material Engenering, 295, pp. 915-922.
https://doi.org/10.1002/mame.201000078
   16. Tor-Swiatek A. (2013). Evaluation of the efectiveness of the microcellular extrusion process of low density polyethylene. Maintenance and Reliability 15, 3, pp. 225-229.