COMPOSITION OF ASH FROM COMBUSTION OF CHLORORGANIC WASTES FORMED AT 1,2-DICHLORHETHANE PRODUCTION

2020;
: 17-22
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

During organochlorine wastes thermal utilization formed at direct chlorination of ethylene to 1,2-dichloroethane in the production of vinyl chloride at Karpatnaftohim LLC, the ash is formed, which clogs gas pipelines and heat exchange elements of the steam generator, causes disruption of normal technological process and leads to emergency shutdowns.The composition of this ash was determined by chemical methods of quantitative analysis and flame photometry for such macrocomponents as Fe2O3 (28%) and FeCl3 (5%), as well as magnesium chlorides (30%) and sodium (4%), the rest (about 32% ) probably resinous highly chlorinated unburned components of VAT residues, carbon particles and nitric acid-insoluble iron compounds.  Utilization methods and possible ways to reduce the amount of ash from the organochlorine waste combustion formed at the production of vinyl chloride are briefly considered.

1.                Kurta, S. A. Khimiia i tekhnolohiia khlororhanichnykh spoluk. – Ivano-Frankivsk: Vydavnytstvo “Plai” TsIT Prykarpatskoho natsionalnoho universytetu imeni Vasylia Stefanyka, 2009. – 265 s. [in Ukrainian]

2.                Promyshlennye khlororhanycheskie produkty. Spravochnyk / Pod. red. L.A. Oshyna. – Moskva: Khimiya, 1978. – 624 s. [in Russian]

3.                Kurta, S. A., Volinsky, A. A., & Kurta, M. S. (2013). Environmentally - friendly organochlorine waste processing and recycling. Journal of Cleaner Production, 54, 150–156. doi: 10.1016/j.jclepro.2013.05.010

4.                Shpariy, M., Starchevskyy, V., Znak, Z., Mnykh, R., & Poliuzhyn, I. (2020). Extraction of iron-containing catalyst from chlororganic wastes generated by ethylene chlorination. Eastern-European Journal of Enterprise Technologies, 2(10 (104)), 19-26. doi:10.15587/1729-4061.2020.201696

5.                Bauman, Y. I., Mishakov, I. V., Vedyagin, A. A., Dmitriev, S. V., Mel’gunov, M. S., & Buyanov, R. A. (2012). Processing of organochlorine waste components on bulk metal catalysts. Catalysis in Industry, 4(4), 261–266. doi:10.1134/s2070050412040034

6.                Myszkowski, J., Milchert, E., Paździoch, W., & Pełech, R. (2007). Formation of environmentally friendly chloroorganic compounds technology by sewage and by-products utilization. Polish Journal of Chemical Technology, 9(3), 118–121. doi: 10.2478/v10026-007-0069-9

7.                Voronkov, M.H., Tatarova, L.A., Trofymova, K.S., Verkhozyna, E.Y., Khaliullin, A.K. (2001) Pererabotka promyshlennykh khlor- i serosoderzhashchikh otkhodov   Khimiya v interesakh ustoichyvoho razvitiya. – No.9. – S. 393–403 [in Russian]

8.                Hlikin, M.A., Kutakova, D.A., Semiboroda, V.V., Pavliuk, E.A., Zinatulin, A.R., Perestoronyna, R.E. (2000). K voprosu pererabotki otkhodov proizvodstva vinilkhlorida s utilizatsiey khlora. Kataliz i neftekhimiya, (No. 5-6), 66–68. Retrieved from http://kataliz.org.ua/arhiv/5-6_2000_ru.html [in Russian]

9.                Żarczyński, A., Zaborowski, M., Paryjczak, T., Gorzka, Z., & Kaźmierczak, M. (2007). Application of catalysts in the treatment of selected waste chloroorganic compounds. Polish Journal of Chemical Technology, 9(2). doi: 10.2478/v10026-007-0028-5

10.                Ketin, S., Sacirovic, S., Skrijelj, R., Plojovic, S., & Plojovic, S. (2017). Incineration as the way of hazardous waste destruction in vinyl chloride production. Fresenius Environmental Bulletin, 26(2a), 1566–1568. Retrieved from: https://www.researchgate.net/publication/313766897

11.                Laskyn, B. M., Vdovets, M. Z., Mukhortov, D. A., Vozniuk, O. N., & Tuhai, A. Y. (2013). Issledovanye osnovnykh parametrov protsessa vysokotemperaturnoho okyslenyia khlororhanycheskykh otkhodov dlia poluchenyia khlorystoho vodoroda. Izvestyia Sankt-Peterburhskoho hosudarstvennoho tekhnolohycheskoho instituta (tekhnicheskoho universiteta), (No. 20(46)), 35–40. Retrieved from http://science.spb.ru/files/IzvetiyaTI/2013/20/articles/08/files/assets/... [in Russian]

12.                Lanzerstorfer, C. (2017). Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences, 54, 178-183. doi:10.1016/j.jes.2016.03.032

13.                Lanzerstorfer, C. (2015). Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences, 30, 191-197. doi:10.1016/j.jes.2014.08.021

14.                Czech, T., Marchewicz, A., Sobczyk, A., Krupa, A., Jaworek, A., Śliwiński, Ł, & Rosiak, D. (2020). Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal. Process Safety and Environmental Protection, 133, 18-31. doi:10.1016/j.psep.2019.10.033

15.                Kurta S.A. (2015). Udoskonalennia Tekhnolohii Vyrobnytstva Khlorystoho Vinilu. (Dys. Dokt. Tekhnichnykh Nauk). Natsionalnyi Universytet Ukrainy Lvivska Politekhnika Lviv. [in Ukrainian]

16.                Kanungo, S. B., & Mishra, S. K. (1996). Thermal dehydration and decomposition of FeCl3·H2O. Journal of Thermal Analysis, 46(5), 1487–1500. doi:10.1007/bf01979262