FINDING OF KINETIC CHARACTERISTICS OF THE PROCESS CO-GASIFICATION OF HEAVY COAL TARS WITH LIGNITE AND WALNUT SHELL

2020;
: 46-52
1
National Technical University “Kharkiv polytechnic Institute”
2
National Technical University “Kharkiv polytechnic Institute”
3
National Technical University “Kharkiv polytechnic Institute”
4
Donbass State Pedagogical University

Studied of co-gasification of heavy coal tars with lignite and walnut shell in the temperature ranged from  400 to 500 °С, the flow rate of oxidand (air) ranged from 0,0005 to  0,004 m3/min.  It is established that the weigth loss of the sample mixtures in the gasification process has a S-shaped. Mathematical and graphical dependences of the influence of oxidant flow rate on the values of reaction rate constants and activation energy of gasification of experimental mixtures were developed.

1. Starovoit, A.G., Pidgursky, I.I.,  Toryanik, E.I., Shulga, I.V., Dolzhanskaya, Yu.B., & Teleshev, Yu.V. (2000). Utilizatsiya otkhodov koksokhimicheskogo proizvodstva. 1. Otkhody tsekhov ulavlivaniya i seroochistki. Koks i Khimiya, 6, 35–43.   [in Russian] 

2. Gulyaev, V.M., & Panchenko, N.I. (2007). Novyy sposob uplotneniya ugol'nykh shikht kak metod snizheniya vrednykh vybrosov pri koksovanii.  Uglekhim. Zh., 3–4, 20–24. [in Russian] 

3. Borisenko, A.l., Avilova, N.I,  Bliznyukova, M.I., & Smirnova, T.P. (2008). Ispol'zovaniye otkhodov koksokhimicheskogo proizvodstva v sostave vodno-maslyanykh emul'siy dlya podachi v ugol'nuyu shikhtu. Uglekhim. Zh., 3–4, 71–76. [in Russian] 

4. Sabirova,T.M., Ryvkin, I.Yu.,Eremin, A.Ya., Litvin E.M., & Babanin V.I. (2002). O svoystvakh i primenenii dispersiy tonkoizmel'chennykh fusov. Koks i Khimiya, 8, 33-37. [in Russian] 

5. Trifanov,V.N., Gorshkov, P.G., Belyanichev, A.N., Pomazan, A.G., Toryanik, E.I., Lyubov, A.A., Kuznechenko, V.M., Mal'ko, N.I., & Sytnik A.V. (2007). Osobennosti proizvodstva koksa iz ugol'noy shikhty s uchastiyem organicheskikh dobavok. Koks i Khimiya, 6, 23-31. [in Russian] 

6. German, K.E., & Borisenko, A.l. (2014). Problemy proizvodstva kotel'nogo topliva iz koksokhimicheskogo syr'ya. Uglekhim. Zh., 5–6, 48-54. [in Russian] 

7. Egorov, V.M., & Maly, E.I. (2003). Kamennougol'nyye fusy kak svyazuyushcheye i vosstanovitel' pri poluchenii rudno-uglerodistykh briketov. Uglekhim. Zh., 1–2, 47-48. [in Russian] 

8. Zhuravleva, N.V. (2007). Polycyclic aromatic Hydrocarbons in coke-industry wastes. Coke and Chemistry, 50 (6), 173–175.

9. Volynkina, E.P., Kudashkina, S.A., & Strakhov, V.M. (1998). Vliyaniye sostava ugol'nykh briketov na vybrosy vrednykh veshchestv pri szhiganii. Koks i Khimiya, 9, 42–44. [in Russian] 

10. Titushkin, V. A., Guryev, E. S., & Poluyan, L. V. (2015). Toxic hazrds of coke production. Coke and Chemistry, 58 (12), 487–491.

11. Borisenko, A.L. (2010).  Periodichnost' kontrolya soderzhaniya politsiklicheskikh aromaticheskikh uglevodorodov v vozdukhe rabochey zony koksokhimicheskikh predpriyatiy Ukrainy. Uglekhim. Zh., 1–2, 84–88. [in Russian] 

12. Patent № 136361 UA IPC C10J 3/00. Sposib otrymannya heneratornoho hazu/ P.V. Karnozhitskiy, D.V. Miroshnichenko, D.Yu. Bilets, O.V. Bogoyavlenska, G.A. Grigor’ev. – Application 20/03/2019; Publ. 08/12/2019.

13. Bilets, D.Yu., Karnozhitskiy P.V., & Karnozhitskiy, P.P. (2018). Utilizing Viscous Organic Coke-Plant Wastes. Coke and Chemistry, 61(4), 147–151.

14. Gyul'maliyev, A.M., Golovin, G. S., & Gladun T.G. (2003). Teoreticheskiye osnovy khimii uglya. – M.: izdatel'stvo Moskovskogo gosudarstvennogo universiteta, 556. [in Russian] 

15. Mar'yandyshev, P. A., Chernov, A.A., Popova, Ye.I., & Lyubov, V.K. (2015). Kineticheskoye issledovaniye drevesnogo topliva, ugley i gidroliznogo linina. Sovremennyye naukoyemkiye tekhnologi, Tekhnicheskiye nauki, 12. 249–253. [in Russian] 

16. Mar'yandyshev, P. A. Chernov, A.A., & Lyubov, V.K. (2014). Termogravimetricheskoye i kineticheskoye issledovaniye torfa i gidroliznogo lignina. Mezhdunarodnyy zhurnal eksperimental'nogo obrazovaniya, 12, 20–27. [in Russian] 

17. Agabekov, V.Ye., Gayshun, I.V., Chuyko, M.M., Shnip, A.I., & Strizhakov, D.A. (2014). Model' protsessa bystrogo proliza melkodispersnykh fraktsiy rastitel'nogo syr'ya/ V.Ye.Agabekov // Doklady Natsional'noy akademii nauk Belarusi, Tekhnicheskiye nauki, tom 58, 16, 101–106. [in Russian] 

18. Shevkoplyas, N. V. (2007).  Raschet osnovnykh kineticheskikh parametrov tverdykh topliv po dannym derivatograficheskogo analiza. Vopr. khimii i khim. Tekhnologii, 2, 179–183. [in Russian] 

19. Alekseyev, A.D. (2010).  Fizika uglya i gornykh protsessov. Kiyev: Naukova dumka, 423. [in Russian] 

20. Falyushin, P.L., Dudarchik, V.M., Krayko, V.M., Anufriyeva, Ye.V., & Smolyachkova,  Ye.A.  (2012). Termoustoychivost' burykh ugley Lel'chitskogo mestorozhdeniya. Prirodopol'zovaniye, 21, 305–311. [in Russian] 

21. Bews, I.M., Hayhurts, A.N., Richardson, S.M, & Taylor, S.G. (2001). The order, Arrhenius parameters, and mechanism of the  reaction between gaseous oxygen and solid carbon. Combustion Flame, 12, 231–245.

22. Hurt, R.H., & Calo, J.M. (2001). Semi-global intrinsic kinetics for char combustion modeling. Combustion Flame, 125, 1138–1149.

23. Kudryashov, I.V., & Karetnikov, G.S. (1991). Sbornik primerov i zadach po fizicheskoy khimii: Uchebnoye posobiye dlya khim. tekhnol. spets. vuzov. – 6-ye izd., pererab. i dop., M.: vysshaya shkola, 527. [in Russian] 

24. Stromberg, A.G., & Semchenko, D.P. (1998). Fizicheskaya khimiya/ Ucheb. dlya khim. tekhnol. spets. vuzov. – 2-ye izd., pererab. i dop./ pod red. A.G. Stromberga/ – M.: vysshaya shkola, 496. [in Russian