KINETICS OF ALDOL CONDENSATION OF ACETIC ACID WITH FORMALDEHYDE ON B–P–V–W–Ox/SiO2 CATALYST

2020;
: 39-45
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
National University Lviv Polytechnic
5
Lviv Polytechnic National University

New catalysts B–P–V–W–Ox/SiO2 of gas-phase condensation of acetic acid from formaldehyde to acrylic acid on an industrial carrier of stable chemical composition (colloidal silicon oxide, Aerosil A-200) were synthesized. It is shown that the hydrothermal treatment of the carrier allows to increase the activity and selectivity of the catalyst in the reactions of aldol condensation of acetic acid with formaldehyde. It was found that the developed catalyst is effective in the condensation reaction of acetic acid with formaldehyde, which allows to obtain acrylic acid with a yield of 68.7% and a selectivity of 94.1%. The kinetic regularities of the reaction on this catalyst are established. According to the proposed kinetic equations, kinetic parameters are calculated that describe the condensation reaction of acetic acid with formaldehyde.

  1. Taniguchi A., Kokubo T., Takesada K., Kondo K., Chiba T., Kumasaki A., Kaneda, Yu. (2007). Acrylic block copolymer and thermoplastic resin composition.U.S. Patent No 7309736 B2.
  2. Wang, Y. N., Lang, X. W., Zhao, G. Q., Chen, H. H., Fan, Y. W., Yu, L. Q., Ma, X. X., Zhu, Z. R. (2015). Preparation of Cs-La-Sb/SiO2 catalyst and its performance for the synthesis of methyl acrylate by aldol condensation. RSC Advances, 5, 32826−32834.
  3. Zuo, C. C., Pan, L. S., Cao, S. S., Li, C. S., Zhang, S. J. (2014). Catalysts, kinetics and reactive distillation for methyl acetate synthesis. Industrial & Engineering Chemistry Research, 53, 10540−10548.
  4. Dziczkowski, J., Dudipala, V., Soucek, M. D. (2012). Grafting sites of acrylic mixed monomers onto unsaturated fatty acids: Part 2. Prog. Org. Coat,73, 308−320.
  5. Niesbach, A., Daniels, J., Schröter, B., Lutze, P., Gorak, A. (2013). The ́inhibition of acrylic acid and acrylate ester polymerisation in aheterogeneously catalysed pilot-scale reactive distillation column. Chem. Eng. Sci.,88, 95−107.
  6. Wang, F., Dubois, J. L., Ueda, W. (2010).Catalytic performance ofvanadium pyrophosphate oxides (VPO) in the oxidative dehydrationof glycerol. Appl. Catal. Vol,  376, 25−32.
  7. Ai, M. (2002). Catalytic activity of iron phosphate doped with a smallamount of molybdenum in the oxidative dehydrogenation of lactic acidto pyruvic acid. Appl. Catal., 234, 235−243.
  8. Skubiszewska-Zieba, J., Khalameida, S., Sydorchuk. V. (2016). Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 139−153.
  9. Nebesnyy, R.V., Pikh, Z.H., Shpyrka, I.I., Ivasiv, V.V., Sydorchuk, V.V., Khalameyda, S.V. (2018). Sposib oderzhannya katalizatora sumisnoho syntezu akrylovoyi kysloty ta metylakrylatu u hazoviy fazi. Ukrayina Patent № 117896. [in Ukrainian]
  10. Leboda, B. Charmas, V. Sydorchuk. (1997). Physicochemical and technological aspects of the hydrothermal modification of complex sorbents and catalysts. Part II. Modification of phase composition and mechanical properties. Adsorp. Sci. Technol., 15, 189–230.
  11. Nebesnyi, R., Pikh, Z., Kubitska, I., Orobchuk, O., Lukyanchuk,A. (2019).Acrylic acid synthesis by oxidative condensation of methanol and acetic acid on B–P–V–W–Ox/SiO2 catalyst. Eastern-European Journal of Eenterprise Technologies, 1/6 (97), 21 – 22.

12. Pikh, Z.H. (2002). Teoriya khimichnykh protsesiv orhanichnoho syntezu. Vydavnytstvo Natsionalʹnoho universytetu «Lʹvivsʹka politekhnika», 396 s. [in Ukrainian]