OBTAINING MAGNESIUM PHOSPHATE FROM LIQUIDS MAGNESIUM-CONTAINING WASTE OF POTASSIUM PRODUCTION

2020;
: 11-16
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Technological aspects of a new method of obtaining magnesium phosphate based on the interaction of magnesium chloride from liquid waste from the processing of potassium ores and sodium phosphate have been studied. The influence of precipitation conditions of magnesium phosphate crystal hydrate, washing of the obtained precipitate and its drying on the yield and product quality was studied. Rational technological parameters of realization of the main stages are chosen. The developed technological process, in comparison with the known ones, allows to simplify the technology, reduce the cost of production, balance the composition of liquid waste for further processing into potassium-magnesium fertilizers.

1. Haidin, A., Rudko, H., Chikova, I. (2017). Hirnycho-khimichnyi potentsial Ukrainy. Kyiv-Chernivtsi: Bukrek. [in Ukrainian]

2. Lunkova, Yu., Khaber, N. (1980). Proizvodstvo kontsentrirovannykh kaliynykh udobreniy iz polimineralnykh rud. Kiyev: Tekhnіka. [in Russian]

3. Yavorskiy, V., Perekupko, T., Blazhivskiy, K., Maksimovich, I., Perekupko, A. (2012). Pererabotka rastvorov khvostokhranilishch kaliynykh proizvodstv Prikarpatia v konditsionnyye produkty. Energotekhnologii i resursosberezheniye, 5, 71-75. [in Russian]

4. Artus, M., Kostiv, I. (2014). Bezkhlornyi shenit. Pereroblennia polimineralnykh kaliinykh rud shliakhom konversii khlorydnykh kaliinykh i kaliino-mahniievykh mineraliv iz natrii sulfatom. Khimichna promyslovist Ukrainy, 2 (121), 53-57. [in Russian]

5. Artus, M., Kostiv, I. (2014). Kinetics of  langbeinite conversion into schenite in the presence of mirabilite, sylvine and water. Chemistry and chemical technology, 8 (4), 455-459.

6. Khatsevych, O., Artus, M., Kostiv, I. (2015). Bezkhlorydne kaliine dobryvo. Tekhnolohiia konversii mirabilitu z kalii khlorydom u khlorydmahniievomu rozchyni. Khimichna promyslovist Ukrainy, 3 (128), 37-42. [in Russian]

7. Artus, M., Kostiv, I. (2015). Conversion of Langbeinite and Kieserite in Schoenite With Mirabilite and Sylvite in Water and Schoenite Solution. J. Chem. Eng. Process. Technol., 6 (2), 1-3.

8. Eraizer, L., Ivanchenko, L. (2015). Pereroblennia polimineralnykh rud Prykarpattia v kaliini dobryva metodom sulfatnoho vyluhovuvannia. Odesa: Ekolohiia. [in Russian]

9. Blazhivskyi, K., Kuzo, A., Maksymovych, I., Bukliv, R. (2019). Konversiia khlorydnykh solei za uchastiu natrii sulfatu pid chas krystalizatsii solei iz khlorydno-sulfatnykh rozchyniv. Pytannia khimii ta khimichnoi tekhnolohii, 2 (123), 71-78. [in Russian]

10. Schrödter, K., Bettermann, G., Staffel, T., Wahl, F., Klein, T., Hofmann, T. (2008). Phosphoric Acid and Phosphates”. Ullmanns Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi : 10.1002 / 14356007. a19_465.pub3.

11. Sherif, Fawzy Gamaleldin. (1984). EP 0113153 A1. European patent office.

12. Nasyrov G.Z., Nemets N.V. (2003). RU №2216510. Moskva: Federalnaya sluzhba po intellektualnoy sobstvennosti, patentam i tovarnym znakam. [in Russian]

13. Maksymovych I.Ie., Blazhivskyi K.I., Bukliv R.L., Partyka T.V. (2019). Patent Ukrainy 134139. Kyiv: Derzhavne pidpryiemstvo "Ukrainskyi instytut intelektualnoi vlasnosti”. [in Ukrainian]