ORGANO-MONTMORILLONITE MODIFIED BY POLYIONENES FOR POLYMER COMPOSITES

2020;
: 187-190
1
State Higher Education Institution «Ukrainian State University of Chemical Technology»
2
State Higher Education Institution «Ukrainian State University of Chemical Technology»
3
State Higher Education Institution «Ukrainian State University of Chemical Technology»
4
State Higher Education Institution «Ukrainian State University of Chemical Technology»
5
University of Latvia

The technology for producing montmorillonite modified with polyionenes has been developed. It was shown that macromolecular polymer intercalation of the quaternary ammonium salt of montmorillonite intercrystalline space is accompanied by an increase in interlayer distances from 1.08 to 1.67 nm. A method for the synthesis of montmorillonite modified with polyionenes is proposed. The optimal conditions for the sorption of polymeonene molecules by montmorillonite were found: the concentration of the aqueous dispersion of montmorillonite is 1%, the temperature of the reaction medium is 40 ° C, the ratio of montmorillonite-polyionene is 3: 1, the processing time is 24 hours.

1. Utracki, L. A. (2004). Clay-containing polymeric nanocomposites. Smithers Rapra Publishing, Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK.
2. Wang, W., Zhang, H., Jia, R., Dai Ya., Dong, H., Hou, H., Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids. 79, 534-543. https://doi.org/10.1016/j.foodhyd.2017.12.013
https://doi.org/10.1016/j.foodhyd.2017.12.013
3. De León-Almazan, C. M., Estrada-Moreno, I. A., PáramoGarcía, U., Rivera-Armenta, J. L. (2018). Polyaniline/clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synthetic Metals, 236, 61-67. https://doi.org/10.1016/j.synthmet.2018.01.006
https://doi.org/10.1016/j.synthmet.2018.01.006
4. Chen, Ch., Khobaib, M., Curliss, D. (2003). Epoxy layered-silicate nanocomposites. Progress in Organic Coatings, 47, 376-383. https://doi.org/10.1016/S0300-9440(03)00130-9
https://doi.org/10.1016/S0300-9440(03)00130-9
5. Li, X., Yang, J., Zhou, X., Wei, Q., Li, J., Biwei, Q., Wunderlich, K., Wang, X. (2018). Effect of compatibilizer on morphology, rheology and properties of SEBS/clay nanocomposites. Polymer Testing. 67, 435-440 https://doi.org/10.1016/j.polymertesting.2018.03.037
https://doi.org/10.1016/j.polymertesting.2018.03.037
6. Zare, Y., Rhee, K. Y. (2017). Multistep modeling of Young's modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Appl. Sci. and Manufacturing. 102, 137-144. https://doi.org/10.1016/j.compositesa.2017.08.004
https://doi.org/10.1016/j.compositesa.2017.08.004
7. Zhong, Y., Zhu, Z., Wang, S. (2018). Synthesis and rheological properties of polystyrene/layered silicate. Chemistry and Technologies,  26(1), 9-19.
8. Iturrondobeitia, M., Ibarretxe, J., Okariz, A., Jimbert, P., Fernandez-Martinez, R., Guraya, T. (2018). Semiautomated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polymer Testing, 66, 280-291 https://doi.org/10.1016/j.polymertesting.2018.01.015
https://doi.org/10.1016/j.polymertesting.2018.01.015
9. Zabihi, O., Ahmadi, M., Nikafshar, S., Preyeswary, K. Ch., Naebe, M. (2018). A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 135, 1-24 https://doi.org/10.1016/j.compositesb.2017.09.066
https://doi.org/10.1016/j.compositesb.2017.09.066
10. Kotal, M., Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Sci., 51, 127-187. https://doi.org/10.1016/j.progpolymsci.2015.10.001
https://doi.org/10.1016/j.progpolymsci.2015.10.001
11. Belušáková, S., Sola-Llano, R., Lopez Arbeloa, I., Martínez-Martínez, V., Bujdák, J. (2018). Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl. Clay Sci., 155, 57-64. https://doi.org/10.1016/j.clay.2018.01.001
https://doi.org/10.1016/j.clay.2018.01.001
12. Volzone, C., Garrido, L. B. (2012). High Temperature Structural Modifications of Intercalated Montmorillonite Clay Mineral with OH-Al Polymers. Procedia Materials Sci., 1, 164-171. https://doi.org/10.1016/j.mspro.2012.06.022
https://doi.org/10.1016/j.mspro.2012.06.022
13. Yebra-Rodriguez, A., Alvarez-Lloret, P., Cardell, C. A., Rodriguez-Navarro, B. (2011). Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci., 51, 414-418 https://doi.org/10.1016/j.clay.2010.12.031
https://doi.org/10.1016/j.clay.2010.12.031
14. Faghihi, K., Taher, M., Hajibeygi, M. (2016). Preparation and characterization of newpolyamide / montmorillonite nanocomposites containing azo moiety in the main chain. Arab. J. Chem., 9, 1496-1502. https://doi.org/10.1016/j.arabjc.2012.03.010
https://doi.org/10.1016/j.arabjc.2012.03.010
15. Beuguel, Q., Ville, J., Crepin-Leblond, J., Mederic, P., Aubry, T. (2017). Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites. Appl. Clay Sci., 135, 253- 259. https://doi.org/10.1016/j.clay.2016.09.034
https://doi.org/10.1016/j.clay.2016.09.034
16. Zulfiqar, S., Sarwar, M. I. (2009). Synthesis and Characterization of Aromatic-Aliphatic Polyamide Nanocomposite Films Incorporating a Thermally Stable Organoclay. Nanoscale Res. Lett., 4, 391-399. https://doi.org/10.1007/s11671-009-9258-1
https://doi.org/10.1007/s11671-009-9258-1
17. Follain, N., Alexandre, B., Chappey, C., Colasse, L., Médéric, P., Marais, S. (2016). Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Sci. and Technol., 136, 18-28. https://doi.org/10.1016/j.compscitech.2016.09.023
https://doi.org/10.1016/j.compscitech.2016.09.023
18. Wang, Z., Pinnavaia, T. J. (1998). Hybrid organicinorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 10, 1820-1826. https://doi.org/10.1021/cm970784o
https://doi.org/10.1021/cm970784o
19. Burnside, S.D., Giannelis, E. P. (1995). Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater., 7, 1597-1600. https://doi.org/10.1021/cm00057a001
https://doi.org/10.1021/cm00057a001
20. Alexandre, M., Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28, 1- 63. https://doi.org/10.1016/S0927-796X(00)00012-7
https://doi.org/10.1016/S0927-796X(00)00012-7
21. Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M. I. (2007). Thermal and mechanical properties of SEBS-gMA based inorganic composite materials. J. Mater. Sci., 42, 93-100. https://doi.org/10.1007/s10853-006- 1082-8.
https://doi.org/10.1007/s10853-006-1082-8
22. Paul, M. A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P. (2003). New nanocomposite materials based on plasticized poly (L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 44, 443-450. https://doi.org/10.1016/S0032-3861(02)00778-4
https://doi.org/10.1016/S0032-3861(02)00778-4
23. Messersmith, P. B., Giannelis, E. P. (1994). Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater., 6, 1719-1725. http://dx.doi.org/10.1021/cm00046a026
https://doi.org/10.1021/cm00046a026