Performance characteristics of polylactide-talc composites

2020;
: 163-168
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin

The influence of the filler - talc, its content, additional heat treatment and temperature on the physical-mechanical and thermophysical properties of polylactide materials, in particular on the surface hardness, heat resistance according to Vick and thermomechanical characteristics has been studied. The influence of filler and temperature on the resistance of polylactide materials to the action of the aqueous medium is revealed. The diffusion coefficient of water in polylactide materials and the activation energy of the diffusion process were determined. It was found that the process of water absorption by filled and heat-treated materials based on polylactide is slower and requires more activation energy of the process.

1. I. Pillin, N. Montrelay, A.  Bourmaud, Y. Grohens (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym Degrad Stab, 93(2), 321-328.
https://doi.org/10.1016/j.polymdegradstab.2007.12.005
2. F. Carrasco, P. Pagèsb, J. Gámez-Pérez, O.O. Santana, M.L.  Maspoch (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95, 116-125.
https://doi.org/10.1016/j.polymdegradstab.2009.11.045
3. Wei Kit Chee, Nor Azowa Ibrahim, Norhazlin Zainuddin, Mohd Faizal Abd Rahman, and Buong Woei Chieng (2013). Impact Toughness and Ductility Enhancement of Biodegradable Poly(lactic acid)/Poly(ε-caprolactone) Blends via Addition of Glycidyl Methacrylate. Advances in Materials Science and Engineering, vol. 2013, Article ID 976373, 8 p.
https://doi.org/10.1155/2013/976373
4. Ana Nazareth Silva, Talita Cipriano, H. M. da F. Thomé da Asilva, Gustavo Monteiro (2014). Thermal, Rheological and Morphological Properties of Poly(Lactic Acid) (PLA) and Talc Composites. Polímeros, 24, 3, 276-282.
https://doi.org/10.4322/polimeros.2014.067
5. Xingxun Liu. (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid) / Xingxun Liu, Tongxin Wang, Laurence C. Chow, Mingshu Yang, and James W. Mitchell // International Journal of Polymer Science, vol. 2014, Article ID 827028, 8 p.
https://doi.org/10.1155/2014/827028
6. De Santis F., Pantani R. (2015). Melt compounding of poly (Lactic Acid) and talc: Assessment of material behavior during processing and resulting crystallization. J. Polym. Res., 22, 1-9.
https://doi.org/10.1007/s10965-015-0885-1
7.  Battegazzore D., Bocchini S., Frache A. (2011). Crystallization kinetics of poly(lactic acid)-talc composites // Express Polym. Lett., 5, 849-858.
https://doi.org/10.3144/expresspolymlett.2011.84
8. V. Levytskyi, D. Katruk, A. Shybanova, L. Bilyi, T.  Humenets'kyi (2017). Physicochemical properties of modified polyester-polyvinylchloride compositions. Materials Science, 52, 4, 559-565.
https://doi.org/10.1007/s11003-017-9990-0
9. V. Levytskyi, D. Katruk, A. Masyuk, T. Bialopiotrowicz, М. Bratychak, N. Chopyk (2018). The Effect of Poly (vinyl chloride) Modifier and Filler Nature on Properties of Polyester Composites. Chemistry&Chemikal Technology, 12, 1, 53-57.
https://doi.org/10.23939/chcht12.01.053
10. D. Katruk, V. Levytskyi, U. Khromyak, V. Moravskyi, A. Masyuk (2019). Physicochemical principles of synthesis and modification of unsaturated polyester-polyvinyl chloride composites and the properties of materials derived from them. International Journal of Polymer Science,  Vol. 2019, Art. ID 2547384, 9 p.
https://doi.org/10.1155/2019/2547384
11. V. Levytskyi, V. Moravskyi,  A. Masyuk,  R. Kuzioła,  K. Grąz , U. Khromyak  (2020). Modified Densified Waste of Expanded Polystyrene and Its Blends With Polyamide 6. Polymer Engineering and Science, 60, 5, 935-943.
https://doi.org/10.1002/pen.25349
12. M. Paul, C. Delcourt, M. Alexandre, P. Dege'e, F. Monteverde, P. Dubois (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab, 87, 3, 535-542.
https://doi.org/10.1016/j.polymdegradstab.2004.10.011
13. J. J. F. Cardoso, Y. G. C. Queirós, K. J. A. Machado, J. M. Costa, E. F. Lucas (2013). Synthesis, characterization, and in vitro degradation of poly(lactic acid) under petroleum production conditions. Brazilian journal of petroleum and gas, 7, 2, 057-069.
https://doi.org/10.5419/bjpg2013-0005
14. D.S. Katruk, T.V. Humenetskyi, V.Ye. Levytskyi, M.V. Boiko (2018). The influence of the poly(vinyl chloride) on the chemical stability of polyester composites. Visnyk NU "Lʹvivsʹka politekhnika": Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 886, 190-195. [in Ukrainian].
15. V. Levytskyi, D. Katruk, V. Kochubei, T. Humenets'kyi, L. Bilyi, A. Masyuk (2017). Influence of polyvinylchloride on the chemical and thermal resistance of highly filled polyester composites. Materials Science, 53, 3, 385-391.
https://doi.org/10.1007/s11003-017-0086-7
16. Xu L., Crawford K., Gorman C.B. (2011). Effects of Temperature and pH on the Degradation of Poly(lactic acid) Brushes. Macromolecules, 44, 4777-4782.
https://doi.org/10.1021/ma2000948