SYNTHESIS AND PREDICTED ANTIVIRAL ACTIVITY OF 4-SUBSTITUTED 9,10-ANTHRAQUINONE DERIVATIVES

2020;
: 67-72
1
Vasyl Stefanyk Precarpathian National University
2
Vasyl Stefanyk Precarpathian National University
3
Vasyl Stefanyk Precarpathian National University
4
Vasyl Stefanyk Precarpathian National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

Antiviral activity was predicted by using data from program PASS Online for synthesized compounds against picornavirus, the influenza and the rhinovirus, what fits in today's strategy of creating of the anthraquinone-based anticancer drugs and with antibacterial effect. There are several current methods to synthesize 9,10-anthraquinone, which contain the biogenic amines in the 4-position. Antiviral activity was predicted by using program AVCpred in a percentage of inhibition against deadly viruses like Human immunodeficiency virus (HIV), Hepatitis C virus (HCV), Hepatitis B virus (HBV), Human herpesvirus (HHV)

1. Malik, E.M., Rashed, M., Wingen, L., Baqi, Y., Muller, C.E. (2016). Ullmann reactions of 1-amino-4-bromoantraquinone bearing various 2-substituents furnishing novel dyes. Dyes and Pigments, 131, 33 - 40.

DOI: 10.1016/j.dyepig.2016.03.023

2. Malik, E.M., Baqi, Y., Muller, C.E. (2015). Syntheses of 2-substituted 1-amino-4-bromo anthraquinones (bromaminic acid analogues) – precursors for dyes and drugs. Beilstein J. Org. Chem., 11, 2326–2333. DOI: 10.3762/bioc.11.253

3. Shupeniuk, V.I., Taras, T.M., Sabadakh, O.P., Bolibrukh, L.D., Zhurakhivska, L.R. (2019). Triazenes on the basis of 4-imidazole substituted antraquinone as the potential inhibitors of proteins. Chem., Technol. and Application of Substances, 2(2), 135-141. DOI: 10.23939/ctas2019.02.135

4. Weinand, K. (1929). US. Patent No.1735147. Washington, DC: U.S. Patent and Trademark Office.

5. Weinand, K. (1928). US. Patent No.1688256. Washington, DC: U.S. Patent and Trademark Office.

6. Raval, D.A., Chauhan, Y.B. (1997). Synthesis of 8-aminoceramidone derivatives by modified two steep process. Indian J. of Chem. Technology, 4, 53–56. Retrieved from http://hdl.handle.net/123456789/30894

7. Oprisan, L., Slavila, N., Sabe, I. (2007). Bromamine acid derivated dyes. U. P. B. Sci. Bull., Series B., 69(2), 43 – 48.

8. Fiene, A., Baqi, Y., Malik, E.M., (2016). Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorganic & Medical Chemistry, 24(18), 4363 - 4371. DOI 10.1016/j.bmc.2016.07.027

9. Dollendorf, C., Kreth, S.K., Choi, S.W., Ritter, H. (2013). Polymerization novel methacrylated anthraquinone dyes. Beistein J. Org. Chem., 9, 453 – 459. Doi:10.3762/bjoc.9.48

10. Zebisch, M., Baqi, Y., Schafer, P. (2014). Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071. J. St. Biology, 185, 336 – 341. doi.org/10.1016/j.jsb.2014.01.005

11. Ghaieni, H., Sharifi, M., Fattollahy, M. (2006). A new method for the preparation of 1-amino-2,4-dibromoanthra-9,10-quinone. Dyes and Pigments, 71, 73 – 76. doi:10.1016/j.dyepig.2005. 06.005

12. Patil, V.V., Gayakwad, E.M., Patel, K.P., Shankarling G.S. (2017). Efficient, facile metal free protocols for the bromination of commercially important deactivated aminoanthracene-9,10-diones. Tetrahedron Letters, 58, 2608–2613. doi.org/10.1016/j.tetlet.2017.05.078

13. Lagunin, A., Stepanchikova, A., Filimonov, D., Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747

14. Qureshi, A., Kaur, G., Kumar, M. (2017) AVCpred an integrated wed server for prediction and design of antiviral compounds. Chem. Biol. Drug. Des., 89, 74-83. Doi:10.1111/cbdd.12834

15. Bamard, D.L., Fairbaim, D.W., O'Neill, K.L., Gage, T.L., Sidwell, R.W. (1995). Anti-human cytomegalovirus activity and toxicity of sulfonated anthraquinones and anthraquinone derivatives. Antiviral Research, 28, 317-329. https://doi.org/10.1016/0166-3542(95)00057-7