Activation of polyethylene granules by finely dispersed zinc

2021;
: 191-197
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Technical University of Kosice (Slovakia)
4
Lviv Polytechnic National University

The results of experimental researches of features of mechanical activation of polyethylene granules with finely dispersed zinc in a ball mill, and also results of research of chemical copper plating of activated polyethylene granules are given. The influence of the ratio of polyethylene granules and fine zinc, the speed of rotation of the ball mill and the duration of activation, as well as the degree of loading of the components in the activation process of polyethylene granules was studied. It is established that the condition of activation of polyethylene granules with finely divided zinc has a significant impact on the metallization process and the copper efficiency of activated polyethylene granules.

1. Muench, F., Eils, A., Toimil-Molares, M. E., Hossain, U. H., Radetinac, A., Stegmann, C., … Ensinger, W. (2014). Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and Coatings Technology, 242, 100-108. doi:10.1016/ j.surfcoat.2014.01.024
https://doi.org/10.1016/j.surfcoat.2014.01.024
2. Huang, J., Gui, C., Ma, H., Li, P., Wu, W., & Chen, Z. (2020). Surface metallization of PET sheet: Fabrication of Pd nanoparticle/polymer brush to catalyse electroless Nickel plating. Composites Science and Technology. 108547. doi:10.1016/j.compscitech. 2020.108547
https://doi.org/10.1016/j.compscitech.2020.108547
3. Mallory,G. O., Hajdu, J. B. (Eds.). (1990). Electroless Plating: Fundamentals And Applications. American Electroplatersand Surface Finishers Society, Florida/William Andrew Publishing, New York.
4. Uzunlar, E., Wilson, Z., & Kohl, P. A. (2013). Electroless Copper Deposition Using Sn/Ag Catalyst on Epoxy Laminates. Journal of The Electrochemical Society. 160(12), D3237-D3246. doi:10.1149/2.039312jes
https://doi.org/10.1149/2.039312jes
5. Charbonnier, M., Romand, M., Goepfert, Y., Léonard, D., & Bouadi, M. (2006). Copper metallization of polymers by a palladium-free electroless process. Surface and Coatings Technology, 200(18-19), 5478-5486. doi: 10.1016/j.surfcoat.2005.07.061
https://doi.org/10.1016/j.surfcoat.2005.07.061
6. Bicak, N., & Karagoz, B. (2008). Copper patterned polystyrene panels by reducing of surface bound Cu (II)-sulfonyl hydrazide complex. Surface and Coatings Technology, 202(9), 1581-1587. doi:10.1016/j.surfcoat. 2007.06.040
https://doi.org/10.1016/j.surfcoat.2007.06.040
7. Garcia, A., Berthelot, T., Viel, P., Polesel-Maris, J., & Palacin, S. (2010). Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers. ACS Applied Materials & Interfaces, 2(11). 3043-3051. doi:10.1021/am100907j
https://doi.org/10.1021/am100907j
8. Suman, R., Nandan, D., Haleem, A., Bahl, S., & Javaid, M. (2020). Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes. Materials Today: Proceedings. doi:10.1016/j.matpr.2020. 04.843
https://doi.org/10.1016/j.matpr.2020.04.843
9. Teixeira, L. A. C., & Santini, M. C. (2005). Surface conditioning of ABS for metallization without the use of chromium baths. Journal of Materials Processing Technology, 170(1-2), 37-41. doi:10.1016/j.jmatprotec. 2005.04.075
https://doi.org/10.1016/j.jmatprotec.2005.04.075
10. Nomura, T., Nakagawa, H., Tashiro, K., Umeda, Y., Honma, H., & Takai, O. (2016). Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Transactions of the IMF, 94(6), 322-327. doi:10.1080/00202967.2016.1223805
https://doi.org/10.1080/00202967.2016.1223805
11. Jia, Y., Chen, J., Asahara, H., Hsu, Y.-I., Asoh, T.-A., & Uyama, H. (2020). Photooxidation of the ABS resin surface for electroless metal plating. Polymer, 122592. doi:10.1016/j.polymer.2020.122592
https://doi.org/10.1016/j.polymer.2020.122592
12. Magallón Cacho, L., Pérez Bueno, J. J., Meas Vong, Y., Stremsdoerfer, G., Espinoza Beltrán, F. J., & Martínez Vega, J. (2014). Novel green process to modify ABS surface before its metallization: optophysic treatment. Journal of Coatings Technology and Research, 12(2), 313-323. doi:10.1007/s11998-014-9632-5
https://doi.org/10.1007/s11998-014-9632-5
13. Song H., Choi J. M., Kim, T.W. (2013). Surface modifcation by atmospheric pressure DBDs plasma: application to electroless Ni plating on ABS resin plates. Trans. Electr. Electron. Mater, 14 (3), 133-138. https://doi.org/10.4313/TEEM.2013.14.3.133.
https://doi.org/10.4313/TEEM.2013.14.3.133
14. Seiler, M., Gruben, J., Knauft, A., Barz, A., Bliedtner, J. (2020) Laser beam activation of polymer surfaces for selective chemical metallization, Procedia CIRP, 94, 891-894. https://doi.org/10.1016/j.procir.2020. 09.067.
https://doi.org/10.1016/j.procir.2020.09.067
15. Rytlewski, P., Jagodziński, B., Malinowski, R., Budner, B., Moraczewski, K., Wojciechowska, A., & Augustyn, P. (2019). Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 144429. doi:10.1016/j.apsusc.2019.144429
https://doi.org/10.1016/j.apsusc.2019.144429
16. Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., ... Palacin, S. (2010). ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Applied Materials and Interfaces, 2(4), 1177-1183. doi:10.1021/am1000163
https://doi.org/10.1021/am1000163
17. Jiang, P., Ji, Z., Wang, X., & Zhou, F. (2020). Surface functionalization - a new functional dimension added to 3D printing. Journal of Materials Chemistry C., 8(36), 12380-12411. doi:10.1039/d0tc02850a
https://doi.org/10.1039/D0TC02850A
18. Atli, A., Trouillet, V., Cadete Santos Aires, F. J., Ehret, E., Lemaire, E., & Simon, S. (2021). A generalized sample preparation method by incorporation of metal-organic compounds into polymers for electroless metallization. Journal of Applied Polymer Science, 138(17). doi: 10.1002/app.50276
https://doi.org/10.1002/app.50276
19. Atli, A., Simon, S., Cadete Santos Aires, F. J., Cardenas, L., Ehret, E., & Lourdin, P. (2017). A new strategy to activate liquid crystal polymer samples for electroless copper deposition. Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44397
https://doi.org/10.1002/app.44397
20. Zhan, J., Tamura, T., Li, X., Ma, Z., Sone, M., Yoshino, M., ... Sato, H. (2020). Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 36. doi:10.1016/j.addma. 2020.101556
https://doi.org/10.1016/j.addma.2020.101556
21. Moravskyi, V., Kucherenko, А., Kuznetsova, М., Dziaman, I., Grytsenko, О., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446
https://doi.org/10.15587/1729-4061.2018.131446
22. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140-145. doi.org/ 10.23939/ctas2020.02.140
https://doi.org/10.23939/ctas2020.02.140
23. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, М., Tsimbalista, Т., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4/12 (88), 50-57. doi.org/ 10.15587/1729-4061.2017.108462
https://doi.org/10.15587/1729-4061.2017.108462
24. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. and Majerníková, J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856. doi.org/10.3390/ma13122856
https://doi.org/10.3390/ma13122856