Micro- and nanostructured titanium(IV) oxide in sono-, photo- and sonophotocatalytic degradation of xanthene dye rhodamine b (Review)

2021;
: 44-52
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Adsorption methods for removing Rhodamine B from wastewater and oxidative degradation methods based on the use of advanced oxidation processes (sonolysis, photolysis, sono-, photo- and sonophotocatalysis) are considered. It has been established that naturally occurring materials (such as clays, zeolites, coal ash, anaerobic sludge, agricultural solid wastes) and their modified or activated analogues are used as adsorbents for the removal of Rhodamine B. The possible mechanism of photo- and sonophotocatalytic degradation of Rhodamine B in the presence of micro- and nanostructured titanium(IV) oxide is presented. The effectiveness of its application for degradation of Rhodamine B is analyzed.

1. Merouani, S., Hamdaoui, O., Saoudi, F., Chiha, M. (2010). Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chemical Engineering Journal, 158 (3), 550-557.
https://doi.org/10.1016/j.cej.2010.01.048
2. Chen, X., Dai, J., Shi, G., Li, L., Wang, G., Yang, H. (2016). Sonocatalytic degradation of Rhodamine B catalyzed by β-Bi2O3 particles under ultrasonic irradiation. Ultrasonics Sonochemistry, 29, 172-177.
https://doi.org/10.1016/j.ultsonch.2015.08.010
3. Tang, S. K., Teng, T. T., Alkarkhi, A. F. M., Li, Z. (Eds.). (2012). Sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2 coated activated carbon, ICESD 2012. Hong Kong, PRC: APCBEE Procedia 1.
https://doi.org/10.1016/j.apcbee.2012.03.019
4. Ma, L., Xi, Y., He, H., Ayoko, G. A., Zhu, R., Zhu, J. (2016). Efficiency of Fe-montmorillonite on the removal of Rhodamine B and hexavalent chromium from aqueous solution. Applied Clay Science, 120, 9-15.
https://doi.org/10.1016/j.clay.2015.11.010
5. Khan, T. A., Dahiya, S., Ali, I. (2012). Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Applied Clay Science, 69, 58-66.
https://doi.org/10.1016/j.clay.2012.09.001
6. Shen, K., Gondal, M. A. (2017). Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. Journal of Saudi Chemical Society, 21 (1), 120-127.
https://doi.org/10.1016/j.jscs.2013.11.005
7. Chang, S.-H., Wang, K.-S., Li, H.-C., Wey, M.-Y., Chou, J.-D. (2009). Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation. Journal of Hazardous Materials, 172 (2-3), 1131-1136.
https://doi.org/10.1016/j.jhazmat.2009.07.106
8. Low, L. W., Teng, T. T., Alkarkhi, F. M., Morad, N., Azahari, B. (2014). Adsorption of Rhodamine B dye on Elaeis guineensis frond fiber. Separation Science and Technology, 49 (7), 1104-1118.
https://doi.org/10.1080/01496395.2013.872148
9. Arivoli, S., Thenkuzhali, M. (2008). Kinetic, mechanistic, thermodynamic and equilibrium studies on the adsorption of Rhodamine B by acid activated low cost carbon. E-Journal of Chemistry, 5 (2), 187-200.
https://doi.org/10.1155/2008/437375
10. Khan, T. A., Sharma, S., Ali, I. (2011). Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: Equilibrium, kinetic and thermodynamic studies. Journal of Toxicology and Environmental Health Sciences, 3 (10), 286-297.
11. Al-Rashed, S. M., Al-Gaid, A. A. (2012). Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society, 16 (2), 209-215.
https://doi.org/10.1016/j.jscs.2011.01.002
12. Sureshkumar, M. V., Namasivayam, C. (2008). Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids and Surfaces A: Physicochem. Eng. Aspects, 317 (1-3), 277-283.
https://doi.org/10.1016/j.colsurfa.2007.10.026
13. Tonelli Largura, M. C., Debrassi, A., dos Santos, H. H., Marques, A. T., Rodrigues, C. A. (2010). Adsorption of Rhodamine B onto O-carboxymethylchitosan-N-lauryl. Separation Science and Technology, 45 (10), 1490-1498.
https://doi.org/10.1080/01496391003698091
14. Znak, Z. O., Sukhatsʹkyy, Yu. V., Mnykh, R. V. (2014). Rozroblennya kavitatsiyno-flotatsiynoho protsesu ochyshchennya stichnykh vod v aspekti realizatsiyi suchasnykh kontseptsiy syntezu khimiko-tekhnolohichnykh system. Visnyk Natsionalʹnoho universytetu "Lʹvivsʹka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 787, 75-79.
15. Sukhatsʹkyy, Yu. V., Znak, Z. O. (2019). Flotatsiya yak stadiya kavitatsiyno-flotatsiynoyi tekhnolohiyi ochyshchennya vodnykh heterohennykh seredovyshch vid dyspersnykh tverdykh chastynok ta orhanichnykh spoluk. Chemistry, Technology and Application of Substances, 2 (1), 53-58.
https://doi.org/10.23939/ctas2019.01.053
16. Yavorsʹkyy, V. T., Znak, Z. O., Sukhatsʹkyy, Yu. V., Mnykh, R. V. (2016). Enerhetychni kharakterystyky obroblennya ahresyvnykh vodnykh seredovyshch u hidrodynamichnykh kavitatorakh. Fizyko-khimichna mekhanika materialiv, 52 (4), 132-136.
https://doi.org/10.1007/s11003-017-9995-8
17. Yavorskiy, V., Sukhatskiy, Y., Znak, Z., Mnykh, R. (2016). Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chemistry & Chemical Technology, 10 (4), 507-513.
https://doi.org/10.23939/chcht10.04.507
18. Sukhatsʹkyy, Yu. V. (2016). Doslidzhennya efektyvnosti kavitatsiyno-flotatsiynoyi tekhnolohiyi ochyshchennya ridkofaznykh seredovyshch vid dyspersnykh chastynok. Naukovyy visnyk NLTU Ukrayiny, 26.4, 295-303.
19. Znak, Z. O., Sukhatskiy, Yu. V., Mnykh, R. V., Tkach, Z. S. (2018). Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii (Issues of Chemistry and Chemical Technology), 3 (118), 64-69.
20. Zin, O. I., Sukhatskiy, Yu. V., Znak, Z. O., Lysenko, A. V. (2017). Cavitation decomposition of benzene under acoustic radiation of ultrasonic range. Visnyk Natsionalʹnoho universytetu "Lʹvivsʹka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 868, 273-278.
21. Znak, Z. O., Sukhatsʹkyy, Yu. V., Zinʹ, O. I., Khomʺyak, S. V., Mnykh, R. V., Lysenko, A. V. (2018). Rozklad benzolu v kavitatsiynykh polyakh. Pytannya khimiyi ta khimichnoyi tekhnolohiyi, 1 (116), 72-77.
22. Znak, Z. O., Sukhatsʹkyy, YU. V., Zinʹ, O. I., Vyrsta, K. R. (2019). Intensyfikatsiya kavitatsiynoho rozkladu benzenu. Pytannya khimiyi ta khimichnoyi tekhnolohiyi, 4 (125), 55-61.
23. Sukhatsʹkyy, Yu. V., Znak, Z. O., Kapatsila, S. M., Sadova, I. B. (2020). Kavitatsiya u kombinovanykh tekhnolohiyakh ochyshchennya stichnykh vod vid toluenu. Visnyk Cherkasʹkoho derzhavnoho tekhnolohichnoho universytetu, 1, 96-104.
24. Kurukutla, A. B., Kumar, P. S. S., Anandan, S., Sivasankar, T. (2014). Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide/ peroxydisulfate/peroxymonosulfate, with Fe2+ ion: Proposed pathway and kinetics. Environmental Engineering Science, 32 (2), 129-140.
https://doi.org/10.1089/ees.2014.0328
25. Merouani, S., Hamdaoui, O., Saoudi, F., Chiha, M., Pétrier, C. (2010). Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase. Journal of Hazardous Materials, 175 (1-3), 593-599.
https://doi.org/10.1016/j.jhazmat.2009.10.046
26. Zhang, S.-J., Shen, L., Gong, W.-J. (2014). Enhancing the degradation of Rhodamine B by hydrodynamic cavitation with CCl4 augmentation. Advanced Materials Research, 864-867, 1244-1252.
https://doi.org/10.4028/www.scientific.net/AMR.864-867.1244
27. Tiong, T. J., Price, G. J. (2012). Ultrasound promoted reaction of Rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments. Ultrasonics Sonochemistry, 19 (2), 358-364.
https://doi.org/10.1016/j.ultsonch.2011.06.022
28. Shi, J., Guo, P., Lu, K. (2011). Research on swirling cavitation degradation and its application in wastewater treatment. Advanced Materials Research, 150-151, 410-413.
https://doi.org/10.4028/www.scientific.net/AMR.150-151.410
29. Shi, J. P., Guo, P. Q., Zhao, H. D. (2012). The application of swirling cavitation in wastewater treatment device. Key Engineering Materials, 499, 330-335.
https://doi.org/10.4028/www.scientific.net/KEM.499.330
30. Xu, R., Jiang, R., Wang, J., Liu, B., Gao, J., Wang, B., …Zhang, X. (2010). A novel method treating organic wastewater: Air-bubble cavitation passing small glass balls. Chemical Engineering Journal, 164 (1), 23-28.
https://doi.org/10.1016/j.cej.2010.07.063
31. Wang, K., Jin, R. -Y., Qiao, Y. -N., He, Z. -D., Wang, Y., Wang, X. -J. (2019). The removal of Rhodamine B by H2O2 or ClO2 combined with hydrodynamic cavitation. Water Science & Technology, 80 (8), 1571-1580.
https://doi.org/10.2166/wst.2019.406
32. Yi, C., Lu, Q., Wang, Y., Wang, Y., Yang, B. (2018). Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrasonics Sonochemistry, 43, 156-165.
https://doi.org/10.1016/j.ultsonch.2018.01.013
33. Kumar, M. S., Sonawane, S. H., Bhanvase, B. A., Bethi, B. (2018). Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP's). Journal of Water Process Engineering, 23, 250-256.
https://doi.org/10.1016/j.jwpe.2018.04.004
34. Li, G., Yi, L., Wang, J., Song, Y. (2020). Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms, geometric and operation parameters. Ultrasonics Sonochemistry, 60, 104806.
https://doi.org/10.1016/j.ultsonch.2019.104806
35. Ayala, J. A., Castillo, C. O., Ruiz, R. S. (2017). Ultrasonic, ultraviolet, and hybrid catalytic processes for the degradation of Rhodamine B dye: decolorization kinetics. Revista Mexicana de Ingeniería Química, 16 (2), 521-529.
36. Ruliza, M. O., Agustina, T. E., Mohadi, R. (Eds.). (2018). Impregnation of activated carbon-TiO2 composite and its application in photodegradation of procion red synthetic dye in aqueous medium, i-TREC 2017. Bali, Indonesia: IOP Conf. Series: Earth and Environmental Science 105, 012024.
https://doi.org/10.1088/1755-1315/105/1/012024
37. Pang, Y. L., Abdullah, A. Z., Bhatia, S. (2010). Comparison of sonocatalytic activities on the degradation of Rhodamine B in the presence of TiO2 powder and nanotubes. Journal of Applied Sciences, 10 (12), 1068-1075.
https://doi.org/10.3923/jas.2010.1068.1075
38. Pang, Y. L., Abdullah, A. Z., Bhatia, S. (2010). Effect of annealing temperature on the characteristics, sonocatalytic activity and reusability of nanotubes TiO2 in the degradation of Rhodamine B. Applied Catalysis B: Environmental, 100 (1-2), 393-402.
https://doi.org/10.1016/j.apcatb.2010.08.016
39. Kumawat, Y. S., Kulkarni, A. D. (2017). Treatment of textile wastewater containing Rhodamine B using advance oxidation processes. International Journal of Scientific Development and Research, 2 (7), 48-59.
40. Wang, Z., Feng, P., Chen, H., Yu, Q. (2020). Photocatalytic performance and dispersion stability of nanodispersed TiO2 hydrosol in electrolyte solutions with different cations. Journal of Environmental Science, 88, 59-71.
https://doi.org/10.1016/j.jes.2019.07.013
41. Hariprasad, N., Anju, S. G., Yesodharan, E. P., Yesodharan, S. (2013). Sunlight induced removal of Rhodamine B from water through semiconductor photocatalysis: Effects of adsorption, reaction conditions and additives. Research Journal of Material Sciences, 1 (4), 9-17.
42. Chen, F., Zhao, J., Hidaka, H. (2003). Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. International Journal of Photoenergy, 5 (4), 209-217.
https://doi.org/10.1155/S1110662X03000345