WETLAND MEADOWS OF CAREX ACUTIFORMIS AS A SOURCE OF BIOELECTRICITY

EP.
2021;
: pp.125-129
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The article presents the assessment of bioelectroproductivity of wetland sedge ecosystems of Carex acutiformis in situ. It was found that it is possible to obtain a bioelectric potential at the level of 864.2-1114.8 mV, depending on external conditions using a pair of electrodes graphite/zinc-galvanized steel and
graphite/aluminum. The increase in soil moisture had a positive effect on bioelectric potential parameters. Widespread in Polissya biotopes of sedge have prospects as sources of green plant-microbial energy.

1. Balashov, L. S., & Solomakha, V. A. (2005). Klasyfikatsiia ekosystem zaplavnykh luk Ukrainy [Ecosystem`s classification of flood-plain meadow of Ukraine]. Ukrainskyi fitotsenolohichnyi zbirnyk,1(23),108–114.

2. Bodnar, V. O. (2016, April 1). Zahalna kharakterystyka lisiv ta lisovoho hospodarstva Ukrainy [General characteristics of Ukraine forests]. Public report of the State Agency of Forest Resources of Ukraine.. Retrieved from http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921

3. Chiranjeevi, P., Mohanakrishna, G., & Mohan, S.V. (2012). Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration. Bioresoure Technology, 124, 364–370. doi: https://doi.org/doi: 10.1016/j.biortech.2012.08.020

https://doi.org/10.1016/j.biortech.2012.08.020

4. Dai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015). Electrical energy production from forest detritus in a forested wetland using microbial fuel cells. Global Change Biology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117

https://doi.org/10.1111/gcbb.12117

5. de Schamphelaire, L., Cabezas, A., Marzorati, M., Friedrich, M. W., Boon, N., & Verstraete, W. (2010). Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Applied & Environmental Microbiology, 76, 2002–2008. doi:  https://doi.org/10.1128/AEM.02432-09

https://doi.org/10.1128/AEM.02432-09

6. Eshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden Half. Boca Raton: CRC Press. https://doi.org/10.1201/b14550

7. Ivchenko, A. S. (2009). Bolotnyie massivyi Ukrainyi [Marshlands of Ukraine]. Svitohliad, 4, 42–47.

8. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi:  https://doi.org/10.1007/s00253-008-1410-9

https://doi.org/10.1007/s00253-008-1410-9

9. Kouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T., & Watanabe, K. (2013). Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One, 8(11), Article e77443. doi: https://doi.org/10.1371/journal.pone.0077443

https://doi.org/10.1371/journal.pone.0077443

10. Liu, S., Song, H., Li, X., & Yang, F. (2013). Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. International Journal of Photoenergy, Article ID 172010, 1–10. doi:  https://doi.org/10.1155/2013/172010

https://doi.org/10.1155/2013/172010

11. Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. doi: https://doi.org/10.1016/j.biortech.2015.05.098

https://doi.org/10.1016/j.biortech.2015.05.098

12. Marynych, O. M., Babychev, F. S., Bieliaiev, V. I., Dorohuntsov, S. I. (Eds.) (1989-1993). Heohrafichna entsyklopediia Ukrainy [Geographical encyclopedia of Ukraine]. (Vol. 1-3). Kyiv: Ukrainska Radianska Entsyklopediia im. M. P. Bazhana [in Ukrainian].

13. Ndjebayi, J. N. (2017). Aluminum Production Costs: A Comparative Case Study of Production Strategy. Walden University. Minneapolis.

14. Rusyn, I. B., & Medvediev, O. V. (2016). U.А. Patent No 112093. Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent).

15. Rusyn, I. B., & Hamkalo, Кh. R. (2019). Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica. Acta Biologica Szegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179.

https://doi.org/10.14232/abs.2018.2.170-179

16. Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research32(9), 870–876. doi: https://doi.org/10.1002/er.1397

https://doi.org/10.1002/er.1397

17. Sudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B. (2019). Performance and Long  Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan. Indonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647

https://doi.org/10.3390/s19214647

18. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology & Biochemistry, 74, 1271–1273. doi: https://doi.org/10.1271/bbb.90852

https://doi.org/10.1271/bbb.90852

19. Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Кebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049

https://doi.org/10.1080/15435075.2019.1650049

20. Ueoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K. (2016). Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells. Journal of Sustainable Bioenergy Systems, 06(01), 10–15. doi: https://doi.org/10.4236/jsbs.2016.61002

https://doi.org/10.4236/jsbs.2016.61002

21. Wetser, K., Liu, J., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass & Bioenergy, 83, 543–550.  doi:  https://doi.org/10.1016/j.biombioe.2015.11.006

https://doi.org/10.1016/j.biombioe.2015.11.006

22. Wetser, K., Dieleman, K., Buisman, C., & Strik, D. P. B. T. B. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. doi: https://doi.org/10.1016/j.apenergy.2016.10.122

https://doi.org/10.1016/j.apenergy.2016.10.122