: pp.125-129
Lviv Polytechnic National University
Lviv Polytechnic National University

The article presents the assessment of bioelectroproductivity of wetland sedge ecosystems of Carex acutiformis in situ. It was found that it is possible to obtain a bioelectric potential at the level of 864.2-1114.8 mV, depending on external conditions using a pair of electrodes graphite/zinc-galvanized steel and
graphite/aluminum. The increase in soil moisture had a positive effect on bioelectric potential parameters. Widespread in Polissya biotopes of sedge have prospects as sources of green plant-microbial energy.

1. Balashov, L. S., & Solomakha, V. A. (2005). Klasyfikatsiia ekosystem zaplavnykh luk Ukrainy [Ecosystem`s classification of flood-plain meadow of Ukraine]. Ukrainskyi fitotsenolohichnyi zbirnyk,1(23),108–114.

2. Bodnar, V. O. (2016, April 1). Zahalna kharakterystyka lisiv ta lisovoho hospodarstva Ukrainy [General characteristics of Ukraine forests]. Public report of the State Agency of Forest Resources of Ukraine.. Retrieved from http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921

3. Chiranjeevi, P., Mohanakrishna, G., & Mohan, S.V. (2012). Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration. Bioresoure Technology, 124, 364–370. doi: https://doi.org/doi: 10.1016/j.biortech.2012.08.020


4. Dai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015). Electrical energy production from forest detritus in a forested wetland using microbial fuel cells. Global Change Biology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117


5. de Schamphelaire, L., Cabezas, A., Marzorati, M., Friedrich, M. W., Boon, N., & Verstraete, W. (2010). Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Applied & Environmental Microbiology, 76, 2002–2008. doi:  https://doi.org/10.1128/AEM.02432-09


6. Eshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden Half. Boca Raton: CRC Press. https://doi.org/10.1201/b14550

7. Ivchenko, A. S. (2009). Bolotnyie massivyi Ukrainyi [Marshlands of Ukraine]. Svitohliad, 4, 42–47.

8. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi:  https://doi.org/10.1007/s00253-008-1410-9


9. Kouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T., & Watanabe, K. (2013). Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One, 8(11), Article e77443. doi: https://doi.org/10.1371/journal.pone.0077443


10. Liu, S., Song, H., Li, X., & Yang, F. (2013). Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. International Journal of Photoenergy, Article ID 172010, 1–10. doi:  https://doi.org/10.1155/2013/172010


11. Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. doi: https://doi.org/10.1016/j.biortech.2015.05.098


12. Marynych, O. M., Babychev, F. S., Bieliaiev, V. I., Dorohuntsov, S. I. (Eds.) (1989-1993). Heohrafichna entsyklopediia Ukrainy [Geographical encyclopedia of Ukraine]. (Vol. 1-3). Kyiv: Ukrainska Radianska Entsyklopediia im. M. P. Bazhana [in Ukrainian].

13. Ndjebayi, J. N. (2017). Aluminum Production Costs: A Comparative Case Study of Production Strategy. Walden University. Minneapolis.

14. Rusyn, I. B., & Medvediev, O. V. (2016). U.А. Patent No 112093. Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent).

15. Rusyn, I. B., & Hamkalo, Кh. R. (2019). Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica. Acta Biologica Szegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179.


16. Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research32(9), 870–876. doi: https://doi.org/10.1002/er.1397


17. Sudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B. (2019). Performance and Long  Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan. Indonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647


18. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology & Biochemistry, 74, 1271–1273. doi: https://doi.org/10.1271/bbb.90852


19. Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Кebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049


20. Ueoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K. (2016). Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells. Journal of Sustainable Bioenergy Systems, 06(01), 10–15. doi: https://doi.org/10.4236/jsbs.2016.61002


21. Wetser, K., Liu, J., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass & Bioenergy, 83, 543–550.  doi:  https://doi.org/10.1016/j.biombioe.2015.11.006


22. Wetser, K., Dieleman, K., Buisman, C., & Strik, D. P. B. T. B. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. doi: https://doi.org/10.1016/j.apenergy.2016.10.122