Calculation of optimal values of measured lenghts for accurate determination of small segments

2014;
: pp. 42 - 47
Received: February 15, 2014
Accepted: March 24, 2014
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Department of Geodesy, Lviv polytechnic National University
4
Lviv Ivan Franko National University

The paper considers a method of minimizing error when the linear values are determined by measured distances and angles by device that is located not directly ahead of determined intervals. The formula is given for choosing the optimal distance and angles to determined objects. The optimal distances and angles are depended on the defined linear segments and the accuracy of the measured distances and angles to determined objects. As can be seen from the analysis of the determination of the formulas accuracy of determined segments are several times (from 5 to 25 times) higher than the precision of measurements, which define these segments. The graphs of accuracy of defined segments by the accuracy of the measured distances and angles are also given. The proposed method can be used to calculate the accuracy of the previous determination of small segments when using the devices for measuring linear and angular values of specified accuracy. Measurement of small segments with high accuracy requires special instruments or devices. For example, to determine the length of the meter and decimeter ranges of leveling rods, that are used in II, III and IV leveling classes, one need to have control meter or special comparator. Using the proposed method it is possible to compare above mentioned rods using electronic total stations. The proposed method can also measure the phase section of exemplary basis, create a reference base for angular measurements, installing equipment in project position, observe deformations of buildings and equipment as well as numerous other engineering tasks.

  1. Antonyuk V. Kompleksna realizatsiya metodu vstanovlennya obladnannya v proektne polozhennya z vykorystannyam suchasnoho ta tradytsiynoho heodezychnoho obladnannya [Comprehensive implementation of the method of installation of equipment project position using modern and traditional surveying equipment]. V. Antonyuk, V. Astaf'yev, V. Hrek, Ye. Klepver, V. Korol'ov, M. Lobur, V. Nikitchenko, A. Vivat, S. Savchuk, T. Shevchenko. “Heodeziya, kartohrafiya i aerofotoznimannya”. [“Geodesy, Cartography and Aerial Photography”].2006, issue. 67. – P. 10–16.
  2. Zabolots'kyy M. V. ta in. Matematychnyy analiz [Mathematical analysis]. Kyiv, 2008. – P.424.
  3. Instruktsyya po nyvelyrovanyyu I, II, III i IV klassov. [Instructions for leveling I, II, III and IV classes]. М.: Nedra, 1990. – P.167.
  4. Tchebotarev A. S., Selyhanjvich V.G., Sokolov M.N. Geodezyja. Ch.II Uchebnik dlia vuzov. [Geodesy. Part II. Textbook for high schools]: Moskovskaya pravda, 1962. – 614 p.
  5. Spravochnyk geodezyzta [Reference for surveyor]. Moskov: Nedra, 1966. – 984 p.
  6. Kupko V., Prokopov O., Lukin I., Sobol' V., Kosenko O., Kofman. O. Natsional'nyy etalonnyy liniynoheodezychnyy polihon. “Suchasni dosyahnennya heodezychnoyi nauky ta vyrobnytstva” [National standard linear geodesic polygon. “Recent advances in geodetic science and industry”]. 2004. – Р. 98–104.
  7. Plotnykov V.S. Heodezycheskye prybory: Uchebnyk dlya vuzov. [Geodezycal instrumentation: Textbook for Universities]. Moskov. Nedra, 1987.– P. 396.
  8. Trevoho I.S., Savchuk S.H, Denysov O.M. Volchko P.I. Novyy vzirtsevyy heodezychnyy bazys. “Visnyk heodeziyi ta kartohrafiyi” [New etalon geodetic basis. “Bulletin of Surveying and Mapping”]. 2004, №1(32). – P. 13–16.
  9. Fys M.,Lityns'kyy V., Pokotylo I., Lityns'kyy S. Obgruntuvannya tochnosti vyznachennya intervaliv mirnykh shkal za vymiryanymy vidstanyamy i kutamy [Justification accuracy of the measured interval scales for the measured distances and angles]. XVIII Mizhnarodnyy naukovotekhnichnyy sympozium “Heoinformatsiynyy monitorynh navkolyshn'oho seredovyshcha”. [International Science and Technology Symposium “Geoinformation monitoring of the environment”]. 2013. – P. 228.
  10. Bertsekas, Dimitri P. (1999). Nonlinear Programming (Seconded.). Cambridge, MA.: Athena Scientific. ISBN 1-886529-00-0.
  11. Vapnyarskii, I.B. (2001), “Lagrange multipliers”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.
  12. Lemaréchal, Claude (2001). “Lagrangian relaxation”. In Michael Jünger and Denise Naddef. Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science 2241. Berlin: Springer-Verlag. pp. 112– 156. doi:10.1007/3-540-45586-8_4. ISBN 3-540-42877-1. MR 1900016.
  13. Geodezychyj encyklopedychnyj slovnyk [Geodetic encyclopedic dictionaty]. Lviv: Eurosvit, 2001. – P. 668.