Research geometric distortion digital SEM-images obtained on SEM JSM-7100F (JEOL, Japan) and the accuracy of their approximation

2015;
: pp. 112-120
Authors:
1
Lviv Polytechnic National University

Purpose. Digital-SEM image, due to various physical factors of scanning electron microscope inherent significant geometric distortion. The aim of this study is to establish and Effective consideration to improve the accuracy to obtain quantitative spatial parameters mikrosurface objects are investigated using SEM. This problem is extremely important, especially nowadays when needed control of technological processes for the production of micron and submicron levels, particularly in engineering, microelectronics and many others. This in turn enables the necessary technological properties of various objects, and thus improve their reliability and efficiency. Methodology. To install and study of digital SEM images obtained on SEM JSM-7100F was used special test facility (test holographic grating) with a resolution r = 1425 lin/mm. Digital SEM images were received increases ranging from 2000h to 40000h. Working (measurement) Digital-SEM images was carried out using special routines “Test-Measuring” and “Polycalc” software complex “Dimicros”. Results. The obtained linear (large-scale) and nonlinear components of geometric distortion digital SEM images, in particular, the real value increases SEM images of test objects showed their rejection of established values on a scale SEM are: along the x-axis image – from approximately -1 % (in Mх from 2000h to 5000h) and +2,5–4 % (in Mх from 7500h to 40000h) and along the axis of the picture – from 0–+1 % (in Mх from 2000h to 5000h) and +3–4 % (in Mх from 7500h to 40000h). Mх accuracy is approximately ± 0,5 %. Thus linear (large-scale) distortion of SEM images obtained on SEM JSM-7100F is relatively insignificant. However, precision studies of quantitative parameters mikrosurface solids they should be taken into account. Nonlinear distortion at the edges of reach SEM images at high magnification to ± 2,5 mm (25 pixels) in image size 12090 mm. Polynomial approximation (consideration) allows them to reduce distortion from 3 to 10 times. Scientific novelty. Metric study of digital images obtained at the present SEM JSM-7100F enforced for the first time. The method of research used by the author and software have shown their effectiveness and feasibility. The practical significance. Application methods for determining and taking into account the geometric distortion digital SEM images mikrosurface solids can significantly improve the accuracy of their spatial obtain quantitative parameters, which in turn improves the reliability and effectiveness of the products made from them.

1. Ivanchuk O. M., Khrupin I. V. Struktura ta funkcii prohramnoho kompleksu "Dimicros" dlja opracjuvannja REM-zobrazhen na cufrovij fotohrammetrychnij stanciji [Structure and function of the program complex "Dimicros" processing of SEM images on a digital photogrammetric station], Recent advances in geodetic science and industry, Lviv, 2012, issue 1(23), pp. 193–197.
2. Ivanchuk O. M. Doslidzhennja tochnosti vyznachennja dijsnykh velychyn zbilshennja (masshtabu) cyfrovykh REM-zobrazhen, otrymanykh na REM JCM-5000 (NeoScope) firmy JEOL [Investigation of the accuracy of the actual values increase (scale) digital SEM images obtained at REM JCM-5000 (NeoScope) company JEOL], Geodesy, cartography and aerial photography, Lviv, 2012, issue 76, pp. 80–84.
3. Ivanchuk O. M., Barfels T., Heeg J., Heger W. Doslidzhennja velychyn heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na REM DSM-960A (Carl Zeiss, Nimechchyna) ta tochnosti jikh vrakhuvannja [Research quantities of geometric distortion of digital SEM images obtained on SEM DSM-960A (Carl Zeiss, Germany) and the accuracy of their incorporation], Geodesy, cartography and aerial photography, Lviv, 2013, issue 78, pp. 120–126.
4. Ivanchuk O. Doslidzennja heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na REN JCM-5000 (NeoScope) ta ijkh aproksymacija [The study of geometrical distortion digital SEM images obtained on SEM JCM-5000 (NeoScope) and their approximation], Scientific papers of Donetsk National Technical University. Series: geological, Donetsk, 2013, Vol. 1(18), pp. 91–97.
5. Ivanchuk O., Chekaylo M. Doslidzennja pokhybok zbilshennja (masshtabu) cyfrovykh REM-zobrazhen, otrymanykh na REM-106I (Sumy, Ukraina) za dopomohoju specialnykh test-objektiv [Research of errors increase (scale) digital SEM images obtained on SEM-106I (Sumy, Ukraine) with special test objects], Geodesy, Cartography and aerial photography, Lviv, 2014, Vol. 79, pp. 82–88.
6. Ivanchuk O. Doslidzennja heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na REM-106I (Sumy, Ukraina) [Research of geometric distortion digital SEM images obtained on SEM-106 I (Sumy, Ukraine)], Recent advances in geodetic science and industry, Lviv, 2014, issue II(28), pp.74–77.
7. Ivanchuk O. Osoblyvosti kalibruvannja heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na riznykh REM [Features Calibration of geometric distortion digital SEM images obtained at different REM], Recent advances in geodetic science and industry, Lviv, 2015, issue I(29), pp.168–173.
8. Kostyshyn M. T., Mustafin K. S. Kvantovaja elektronika [Quantum Electronics], Kyiv, 1982, issue 23, pp.29–33.
9. Kalantarov E. I., Sagyndykova M. Zh. Photogrammetricheskaja kalibrovka electronnych microskopov [Photogrammetric calibration of electron microscopes], Proceedings of the universities. Surveying and aerial photography, Moscow, 1983, issue 4, pp.76–80.
10. Melnik V. N., Sokolov V. N., Ivanchuk O. M., Tumskaja O. V., Shebatinov M. P. Kalibrovka geometricheskich iskazhenij REM-snimkov [Calibration of geometric distortion SEM images], Manuscript deposited at VINITI, Moscow, 1984, issue 528, 18 p.
11. Melnik V. M., Shostak A. M. Rastrovo-elektronna stereomikrofraktohrafija [Raster electron stereomikro-fraktografition], Luck, Vezha, 2009. 469 p.
12. Finkovsky V. J., Melnik V. N., Ivanchuk O. M. K teorii photogrammetricheskoj obrabotki REM-snimkov [Theory of photogrammetric processing of SEM images], Geodesy and Cartography, Moscow, 1984, issue 2, pp.29–33.
13. Shostak A. V. Metody i modeli mikrophotogrammetrii u prukladnych naukovych doslidzhennjach. Dokt. Diss. [Methods and models mikrophotogrammetry in applied research. Doct. Diss.]. Kyiv, 2012. 28 p.
14. Boyde A., H. F. Ross. Photogrammetry and Scanning electron microscopy. Photogrammetric Record. 1975. Vol. 8. No. 46. pp. 408–457.
https://doi.org/10.1111/j.1477-9730.1975.tb00805.x
15. Burkhardt R. Untersuchungen zur kalibrirung eines Elektronen mikroskopes. Mitt. geod. Inst. Techn. Univ. Graz. 1980. No. 35.
16. Ghosh S. K. Photogrammetric calibration of a scanning electron microscope. Photogrammetria. 1975. Vol. 31. No. 31. pp. 91–114.
https://doi.org/10.1016/0031-8663(75)90008-3
17. Ghosh, S. K., H. Nagaraja. Scanning Electron Micrography and Photogrammetry. Photogrammetric Engineering and Remote Sensing. 1976. Vol. 42. No. 5. pp. 649–657.
18. Howell P. A practical method for the correction of distortions in SEM photogrammetry. Proc. Of the Annual Scanning Electron Microscope Symposium. Chicago, Illinois. 1975. pp. 199–206.
19. Maune, D.F. SEM Photogrammetric Calibration. In Scanning Electron Microscopy: Proceedings of the 8th SEM Symposium. St. Louis. 1975. Vol. 1. pp. 207–215.
20. Ritter M. A landmark – based method for the geometrical 3D calibration of scanning microscopes. Dissertation Dr. Ing., Berlin. 2007. 131 p.