Problems and prospects of estimating Earth deformation fields from geodetic data

: pp. 73-94
Received: November 06, 2015
Department of Geodesy and Cartography, National University of Water and Environmental Engineering

Aim. Analysis of the current state of solving the problem the estimating of earth deformation fields based on continuum mechanics, improving traditional methods the estimating of horizontal deformations, definition an alternative approach and justification of ways and the algorithm of solving the problem based on it. Methodology and results. The analysis showed some shortcomings of traditional solving of the problem. In order to minimize their impact the improved method of mathematical and cartographic modeling of linear deformations is proposed. The essence of improvements consists in the necessity of a priori statistical test of conditions of the locally homogeneous linear model and forming finite elements of the surface on its results in the particular implementation of deformation fields. The finish result of geodetic data processing is a synthetic inventory map of decisions. Some results of the method approbation in Europe are shown. An improved method provides reliable indicators of deformations of the surface where the linear homogeneous hypothesis is confirmed. But do not allow to fully estimating the deformation of the surface of the study area as a whole. In order to avoid this shortcoming, an alternative approach to the solving of the problem is proposed. Prospects of the solving with the geometric point of view based on the projective-differential geometry are substantiated. To search for ways of solving the problem was elected the theory of the surfaces mapping. According to the hypothesis that distortions of the initial surface in the transition to the mapping surface are caused by the geodynamic factor, this approach allows to generate the mapping tensor (deformation tensor) and submit distortions by different numerical characteristics. A tensor defines the function that implements the mapping. Its components are partial derivatives of the function of deformed surface coordinates from her initial coordinates. The theory of mapping does not limit the class of such functions, but only imposes on them homeomorphism conditions. This allows you to transfer deformations by nonlinear functional models. Depending on types of geodetic data defined the ways of solving the problem of deformation fields estimating. Data types define geodetic reference frame surfaces with corresponding to them coordinate systems. The choice of coordinate systems was associated with types of parameterizations and mapping of surfaces. Mathematical solving of the problem on the plane in a rectangular system (quasiconformal mapping of Riemann surfaces parameterization) and also on the geosphere and ellipsoid of revolution in corresponding curvilinear coordinate systems (mapping of surfaces with isometric parameterization) are obtained. Prospects of using the theory of mapping into estimating of spatial earth’s deformations in the geocentric coordinate system are substantiated also. Originality. Solving of tasks the estimating of earth’s deformation fields been achieved by methods of the projective-differential geometry on an alternative theoretical basis - the theory of the surfaces mapping. Practical significance. The chosen alternative approach has greater potential capabilities compared with traditional which is based on the linear homogeneous model of continuum mechanics. The obtained solving makes it possible to estimate the deformation fields within the framework of any empirical nonlinear functional models only on homeomorphism conditions of surfaces mapping. On this basis, a general algorithm for solving the problem is generated.

1. DeMers Maykl N. Geograficheskie informatsionnye sistemy. Osnovy. Per. s angl. [Geographic Information Systems. Fundamentals. Transl. from English], Moscow: Data+, 1999, 489 p.
2. Esikov N. P. Tektonofizicheskie aspekty analiza sovremennyh dvizhenij zemnoj poverhnosti [Tectonophysical aspects of the analysis of recent movements of the earth's surface]. Novosibirsk: Nauka, 1979, 173 p.
3. Kagan V. F. Osnovy teorii poverhnostej v tenzornom izlozhenii. Chast' 1,2 [Fundamentals of the theory of surfaces in tensor presentation. Part 1,2]. Gosudarstvennoe izdatel'stvo tehniko-teoreticheskoj literatury Moscow, Leningrad: State Publishing House of technical and theoretical literature, 1947–1948, 919 p.
4. Kirichuk V. V., Tadeev A. A. Ob odnoy metodike opredeleniya kharakteristik deformatsii zemnoy kory po geodezicheskim dannym [On a method of determining the crystal deformations characteristics from geodetic data]. Geodeziya, kartografiya i aerofotosemka [Geodesy, Cartography and Aerial photography]. 1986, issue. 43, pp. 31–38.
5. Landau L. D., Lifshits Ye. M. Mekhanika sploshnykh sred [Continuum Mechanics]. Moscow: State Technical Press, 1953, 788 p.
6. Marchenko O., Tretiak K., Kulchytskyi A., Holubinka Yu., Marchenko D., Tretiak N. Doslidzhennia hravitatsiinoho polia, topohrafii okeanu ta rukhiv zemnoi kory v rehioni Antarktyky [Research of gravitational field, ocean topography and crystal movements in the region of Antarctica]. Lviv: Lviv Polytechnic, 2012, 308 p.
7. Meshcheryakov G. A. Teoreticheskie osnovy matematicheskoy kartografii [Theoretical foundations of mathematical cartography]. Moscow: Nedra, 1968, 160 p.
8. Oden Dzh. Konechnye elementy v nelineynoy mekhanike sploshnykh sred. Per. s angl. [Finite elements in nonlinear continuum mechanics. Transl. from English]. Moscow: Mir, 1976, 465 p.
9. Tadeev A. A. O kartograficheskom smysle invariantnykh kharakteristik deformatsii zemnoy poverkhnosti [About cartographic sense of invariant characteristics of earth surface deformations] Geodeziya, kartografiya i aerofotosemka [Geodesy, Cartography and Air-Survey]. 1986, Vol. 43, pp. 117–121.
10. Tadieieva O. O., Tadieiev O. A., Cherniaha P. H. Dostovirnist rezultativ opratsiuvannia heodezychnykh danykh metodom skinchennykh elementiv [Reliability of results of geodetic data processing by finite element method] Heodynamika [Geodynamics]. 2012, no. 2(13), pp. 28–33.
11. Tadieieva O. O., Tadieiev O. A., Cherniaha P. H. Matematyko-kartohrafichne modeliuvannia liniinykh deformatsii zemnoi poverkhni. [Mathematics and cartographic modeling of linear deformations of the earth surface] Visnyk heodezii ta kartohrafii [Bulletin of Geodesy and Cartography]. 2014, no. 1 (88), pp. 16–22.
12. Tadieiev O. A., Lutsyk O. O. Doslidzhennia deformatsii zemnoi poverkhni za rezultatamy GNSS-sposterezhen na terytorii Yevropy (2004-2014 r.r.) [Study of the earth's surface deformations from results of GNSS-observations in Europe (2004-2014)]. Naukovyi visnyk Uzhhorodskoho universytetu. Heohrafiia. Zemleustrii. Pryrodokorystuvannia [Uzhgorod University Scientific Herald. Geography. Land Management. Nature Management]. 2014, Vol. 3, pp. 27–35.
13. Tadieiev O. Otsiniuvannia deformatsii zemnoi poverkhni za danymy v heodezychnykh kryvoliniinykh systemakh koordynat. [Estimation of earth surface deformations according to the data in geodetic curvilinear coordinate systems] Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva [Modern achievements of geodetic science and industry]. 2015, Vol. I (29), pp. 48–52.
14. Tadieiev O. A. Otsiniuvannia deformatsii zemnoi poverkhni z pozytsii teorii kvazikonformnykh vidobrazhen [Estimation of earth surface deformations from the standpoint of the theory of quasiconformal mappings]. Heodeziia, kartohrafiia i aerofotoznimannia. [Geodesy, Cartography and Aerial Photography]. 2013, Vol. 78, pp. 140–145.
15. Tadieiev O. Otsiniuvannia deformatsii zemnoi poverkhni, redukovanoi na heosferu // Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva. [Estimation of earth surface deformations transferred to geosphere]. Modern achievements of geodetic science and industry. 2013b, Vol. II (26), pp. 46–52.
16. Tadieiev O. A., Tadieieva O. O., Cherniaha P. H. Problema otsinky deformovanoho stanu zemnoi poverkhni za heodezychnymy danymy [Problem of assessing of the Earth's surface strain state by geodetic data]. Geodynamics, 2013, no. 1(14), pp. 5–10.
17. Tadieiev O. A. Shliakhy vyrishennia zadachi otsiniuvannia deformatsii zemnoi poverkhni za heodezychnymy danymy [Ways of solving tasks of estimation of earth surface deformation from geodetic data]. Visnyk heodezii ta kartohrafii. [Bulletin of Geodesy and Cartography]. 2013, no. 5(86), pp. 21–26
18. Finikov S. P. Proektivno-differencial'naja geometrija [The projective differential geometry]. Obedinennoe nauchno-tehnicheskoe izdatel'stvo, [Joint Scientific and Technical Publishing House].Moscow, Leningrad, 1937, 265 p.
19. Altiner Y. Analytical surface deformation theory for detection of the Earths crust movements. Berlin: Springer, 1999, 110 p.
20. Altiner Y., Bacic Z., Basic T., Coticchia A., Medved M., Mulic M., Nurce B. Present-day tectonics in and around the Adria plate inferred from GPS measurements. Dilek Y., Pavlides S. (Eds.), Postcollisional tectonics and magnetism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, 2006, pp. 43–55.
21. Bibbi H. M. Unbiased estimate of strain from triangulation data using the method of simultaneous reduction. Tectonophysics. 1982, Vol. 82. pp. 161–174.
22. Brunner F. K., Coleman R., Hirsch B. A comparison of computation methods for crystal strains geodetic measurements. Tectonophysics. 1981, Vol. 71, pp. 281–298.
23. Cacon S., Kontny B., Kostak B. Monitoring and analysis of rock blocks deformation. 13th FIG Symposium on Deformation Measurement and Analysis, Lisbon 2008 May 12-15. 2008, 12 p. mc038.pdf
24. Caspary W. F. Concepts of network and deformation analysis – Kensington, Australia: University of New South Wales, 1987, 183 p.
25. Cline A. K., Renka R. J. A storage-efficient method for construction of a Thiessen triangulation. Rocky Mountain Journal of Mathematics. 1984, Vol. 14, pp. 119–139.
26. Dermanis A. A method for the determination of crustal deformation parameters and their accuracy from distances. Journal of Geodetic Society of Japan. 1994, Vol. 40, pp. 17–32.
27. Dermanis A. A study of the invariance of deformation parameters from a geodetic point of view. Kontadakis M. E., Kaltsikis C., Spatalas S., Tokmakidis K., Tziavos I. N. (Eds.), The apple of knowledge. Volume in honor of prof. D. Arabelos. Publication of the school of rural & surveying engineering, Aristotle university of Thessaloniki, 2010. pp. 43-66.
28. Dermanis A., Grafarend E. W. The finite element approach to the geodetic computation of two- and three-dimensional deformation parameters: a study of frame invariance and parameter estimability. Sevilla M. J., Henneberg H. (Eds.), Proceeding International Conference "Cartography-Geodesy", 5th Centenary of Americas: 1492–1992, Maracaibo, Venezuela, 24.11.–3.12.1992, Madrid: Instituto de astronomia y geodesia, 1993, pp. 66–85.
29. Dermanis A., Kotsakis C. Estimating crustal deformation parameters from geodetic data: review of existing methodologies, open problems and new challenges. Sanso F., Gil A. (Eds.), Geodetic deformation monitoring: from geophysical to geodetic roles. IAG symposia, vol. 131. Berlin: Springer, 2006, pp. 7–18.

30. Dermanis A. Applications of deformation analysis in geodesy and geodynamics / A. Dermanis, Е. Li­vieratos // Reviews of Geophysics and Space Physics. – 1983. – Vol. 21. – P. 41–50.
31. Dermanis A. The evolution of geodetic methods for the determination of strain parameters for earth crust deformation. Arabelos D., Kontadakis M., Kaltsikis Ch., Spatalas S. (Eds.), Terrestrial and stellar environment. Volume in honor of prof. G. Asteriadis. Publication of the school of rural & surveying engineering, Aristotle university of Thessaloniki, 2009, pp. 107–144.
32. Frank F. C. Deductions of earth strains from survey data. Bulletin of the Seismological Society of America. 1966, Vol. 56, pp. 35–42.
33. Grafarend E. W. The transition from three-dimensional embedding to two-dimensional Euler-Lagrange deformation tensor of the second kind: variation of curvature measures. Pure and Applied Geophysics. 2012, Vol. 169, pp. 1457–1462.
34. Grafarend E. W., Voosoghi B. Intrinsic deformation analysis of the Earths surface based on displacement fields derived from space geodetic measurements. Case studies: present-day deformation patterns of Europe and of the Mediterranean area (ITRF data sets). Journal of Geodesy. 2003, Vol. 77, pp. 303–326.
35. Harada T., Shimura M. Horizontal deformation of the crust in western Japan revealed from first-order triangulation carried out three times. Tectonophysics. 1979, Vol. 52, pp. 469–478.
36. Hartmann F., Katz C. Structural analysis with finite elements –Berlin Heidelberg New York: Springer, 2007, 591 p.
37. Hjelmstad K.D. Fundamentals of structural mechanics. NY: Prentice Hall, Upper Saddle River, 1997, 480 p.
38. Hossainali M., Becker M., Groten E. Comprehensive approach to the analysis of the 3D kinematics deformation with application to the Kenai Peninsula. Journal of Geodetic Science. 2011a., Vol.1(1), pp. 59–73.
39. Hossainali M., Becker M., Groten E. Procrustean statistical inference of deformation. Journal of Geodetic Science. 2011b, Vol.1(2), pp. 170–180.
40. International Association of Geodesy (IAG). Commission 3. Earth Rotation and Geodynamics.
41. International Federation of Surveyors (FIG).
42. Joint International Symposium on Deformation Monitoring (JISDM).
43. Kiamehr R., Sjoberg L.E. Analysis of surface deformation patterns using 3D finite element method: A case study in the Skane area, Sweden. Journal of Geodynamics. 2005, Vol. 39, pp. 403–412.
44. May D. A., Schellart W. P., Moresi L. Overview of adaptive finite element analysis in computational geodynamics. Journal of Geodynamics. 2013, Vol. 70, pp. 1–20.
45. Moghtased-Azar K., Grafarend E. W. Surface deformation analysis on dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects. Journal of Geodesy. 2009, Vol. 83, pp. 431–454.
46. Ogden R. W. Non-linear elastic deformation (Dover civil and mechanical engineering). E.Harwood Ltd, Chichester, New York: Halsted Press, 1984, 526 p.
47. Pietrantonio G., Riguzzi F. Three-dimensional strain tensor estimation by GPS observations: methodological aspects and geophysical applications. Journal of Geodynamics. 2004, Vol. 38, pp. 1–18.
48. Pope A. J., Stearns J. L., Whitten C. A. Surveys for crustal movement along the Hayward fault. Bulletin of the Seismological Society of America. 1966, Vol. 56, pp. 317–323.
49. Savage J. C., Burford R. O. Accumulation of tectonic strain in California. Bulletin of the Seismological Society of America. 1970, Vol. 60, pp. 1877–1896.
50. Savage J. C., Prescott W. H. Precision of Geodolite distance measurements for determining fault movements. Journal of Geophysical Research. 1973, Vol. 78, pp. 6001–6008.
51. Schneider D. Complex Crustal Strain Approximation – Institut für Geodäsie und Photogrametrie, Eidgenössischen Technischen Hochschule Zürich, Mitteilungen 33, 1982, 221 p.
52. Terada T., Miyabe N. Deformation of the earth crust in Kwansai districts and its relation to the orographic feature. Bulletin of Earthquake Research Institute, University of Tokyo. 1929, no.7(2), pp. 223–241.
53. Vanicek P., Grafarend E., Berber M. Short note: strain invariants. Journal of Geodesy. 2008, Vol. 82, pp. 263–268.
54. Voosoghi B. Intrinsic deformation analysis of the Earths surface based on 3-dimensional displacement fields derived from space geodetic measurements. PhD thesis, Institute of Geodesy, University of Stuttgart, Germany, 2000, 110 p.
55. Xu P. L., Grafarend E. W. Statistics and geometry of the eigenspectra of three-dimensional decond-rank symmetric random tensor. Geophysical Journal International. 1996, Vol. 127(3), pp. 744–756.