: pp. 56-63
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University, Novovolynsk Electromechanical College

Object  temperature  diagnostics  by means  of  infrared  temperature measurements  as well  as measurements  of temperature gradients are considered. Values of the surface temperature carry information about the internal structure, defects and their  location  of measured  object. This  information  becomes  quite  important  for  preventive measures  and  repairs  of  technical objects.

The world production of infrared thermometers and pyrometers, thermal imagers and infrared cameras is quite significant. These measuring devices are small-sized, with low power consumption at comparatively high performance and the possibility of real-time  processing  information.  It  contributes  to  expanding  the  radiation  thermometers  and  infrared  cameras  application  in industry. However,  low  accuracy  of  infrared  temperature measurements  can  lead  to  inadequate  decisions  caused  by  inefficient analyze  of  thermograms. The  lack  of  correct  information  about  values  of  impact  factors  including  an  emissivity  coefficient  in industrial conditions becomes a decisive.

Therefore, enhancing the accuracy of temperature/temperature gradient measurements of object surface and developing of temperature measurement methodology in production cycles becomes more and more important.

[1] B. Wiecek, Termowizija w podczerwieni podstawy i zastosowania, Warshawa, Poland: Wydawnictwo PAK, 2011.

[2]  G.  Ribaud,  Traité  de pyrométrie  optique,  Paris, France: Revue d’Optique, 1931. 

[3]  T.  G.  Harrison,  Radiation  pyrometry,  Moscow, USSR: Mir, 1964.

[4] M. A. Bramson, Infrared radiation of heated bodies, Moscow, USSR: Science, 1964.

[5]  A.  N.  Gordov,  Fundamentals  of  pyrometry, Moscow, USSR: Metallurgy, 1971.

[6]  G.  Gossorg, Infrared  Thermography.  Principles, Techniques, Application, Moscow, USSR, 1988.

[7] N. Hots, “Investigation of temperature measurement uncertainty  components  for  infrared  radiation  thermometry”, Adv. in Intel. Systems and Comp., no. 543, pp. 556–566, 2017.

[8]  W.  Minkina,  and  S.  Dudzik,  Infrared thermography:  errors  and  uncertainties.  Chichester,  United Kingdom: John Wiley & Sons Ltd, 2009. 

[9]  N.  Hots,  and  T.  Piątkowski,  “Analiza  czynników składowych błędów  pirometrii  radiacyjnej”,  Pomiary. Automatyka. Kontrola, no. 11, pp. 874–877, 2009.

[10] JCGM 100:2008 Evaluation of measurement data –  Guide  to  the  expression  of  uncertainty  in  measurement. International  Organization  for  Standardization-International Electrotechnical  Commission-International  Organization  of Legal  Metrology-International  Bureau  of  Weights  and Measures,  September  2008.  [Online].  Available: documents/jcgm/JCGM_100_2008_E.pdf.

[11]  D.  Y.  Svet,  Optical  measuring  methods  of  true temperature, Moscow, USSR: Science, 1982.

[12]  V.  N.  Snopko,  Spectral  methods  of  optical pyrometry  of  heated  surface,  Minsk,  Belarus:  Science  and technology, 1988.

[13]  V.  N.  Snopko,  Wide-spectral  optical  pyrometer: Part 1, Minsk, Belarus, Preprint / Institute of Physics Academy of Sciences of Belarus, 1993.

[14] V. N. Snopko, “Methods of optimal polychromatic pyrometry”, Thermophysics of High Temperature, vol. 25, no. 5, pp. 980–986, 1987.

[15] D. Y. Svet, Objective methods of high-temperature pyrometry under a continuous spectrum of radiation, Moscow, USSR: Science, 1968.

[16] E. Bromberg, and K. Kulikovskiy, Testing methods of  improving  of  measurement  accuracy,  Moscow,  USSR: Energy, 1978. 

[17]  N.  Hots,  “Comparative  characteristics  of pyrometry  methods”,  Devices  +  Automation,  no. 7  (85),  pp. 35–50, 2007. 

[18] N. Hots,  “Method  of  control  and  linearization  of calibration  function  for  reference  infrared  radiation thermometer”,  in  13th  International  Conference  on  Modern Problems  of  Radio  Eng.,  Telecom.  and  Comp.  Sc.  (TCSET), Lviv, Ukraine, pp. 308–311, 2016.

[19]  N.  Hots,  and  Yu.  Dzikovska,  “Development  of Extended  Area  Grey  Emitter  for  Usage  in  the  Temperature Measurements by Infrared Radiation”, Metrology and Devices, no. 2 (64), pp. 23–29, 2017.