COMPUTER SIMULATION OF THE INFLUENCE OF WIND POWER PLANTS ON THE COMPARTMENTS OF THE COMPLEX LANDSCAPE SYSTEM BY THE METHOD OF LIFE CYCLE ASSESSMENT

2020;
: pp. 9-23
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Ukraine
4
AGH University of Science and Technology, Poland

It is proposed to apply the concept of life cycle assessment of alternative energy sources, such as wind turbines, to assess their environmental impact. Through simulation modeling, using SimaPro software, obtained was an integrated system of indicators of the impact wind energy systems on the layers subsystems of the compartments of complex landscape systems. A process tree has been built to identify potential impacts, as well as to characterize, weigh, and rank them. Based on the assessment analysis of various environmental impacts, it was determined that significant consequences for the layers of the subsystems of the complex landscape systems compartments usually arise at the stage of transportation, installation, and erection of wind turbines, as well as the removal of individual components or the entire turbine at the end of its operation. It is shown that the study of all the processes alone, starting from the formation and ending with the utilization of landscape-technogenic systems will reveal the possible integrated effects of their impact on the environment.

[1] D. de Renzo, “Vetrojenergetika” [Wind power], [Per. s angl. Zubareva V.V. i Drankfurta M.O.]; Jenergoatomizdat, Moskva, 1982.

[2] Gh. M. Zabarnyj, A. V. Shhurchkov “Energhetychnyj potencial netradycijnykh dzherel energhiji” [Energy potential of non-traditional energy sources], ITTF, Kyiv, 2002, pp. 151-159.

[3] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind energy. Handbook, England, 2001.

https://doi.org/10.1002/0470846062

[4] T. Chmielniak, Technologie energetyczne. Wydawnictwa NaukowoTechniczne, Warszawa, 2008.

[5 ISO 14040 Environmental Management. Life Cycle Assessment. Principles and framework. International Organisation for standardisation: Geneva, Switzerland, 1997.

[6] ISO 14042: DSTU ISO/TR 14047:2007 (ISO/TR 14047:2003, IDT) Ekologhichne upravlinnja. Ocinjuvannja vplyviv u procesi zhyttjevogho cyklu. Pryklady zastosuvannja. [Environmental management. Impact assessment in the life cycle. Application examples], Derzhstandart Ukrajiny, Kyiv, 2009.

[7] DSTU ISO 14040:2004 Ekologhichne keruvannja. Ocinjuvannja zhyttjevogho cyklu. Pryncypy ta struktura [Environmental management. Life cycle assessment. Principles and structure], Derzhstandart Ukrajiny, Kyiv, 2007.

[8] B. Cleary, A. Duffy, A. O’Connor, “Using life cycle assessment to compare wind energy infrastructure”, Proceedings of International Symposium on Life Cycle Assessment and Construction, 2012, pp. 31-39.

[9] E. Martinez, F. Sanz, S. Pellegrini [et. Al] “Life cycle assessment of a multi-megawatt wind turbine”, Renewable Energy 34(3), pp. 667-673, 2009.

https://doi.org/10.1016/j.renene.2008.05.020

[10] Ch. Chenai, Life cycle analysis of wind turbin. Sustainable Development, Energy, Engineering and Technologies, Manufacturing and Environment,  2012.

https://doi.org/10.5772/29184

[11] T. Toth, S. Szegedi, “Anthropogeomorphologic impacts of onshore and offshore wind farms” Acta climatologica et chorologica 40-41, pp. 147-154, 2000.

[12] B. Ermolenko, G. Ermolenko, M. Ryzhenkov, “Jekologicheskie aspekty vitroenergetiki” Environmental aspects of wind power]. Teplojenergetika, Moskva, 11, 2011, pp. 72-78.

[13] Andersen PD (7/8.3.2002): Environmentally Sound Design and Recycling of Future Wind Power Systems. In: IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines. Risoe National Laboratory.

[14] E. Martínez, F. Sanz, S. Pellegrinia, E. Jiménezc, J. Blancob, “Life cycle assessment of a multi-megawatt wind turbine” Renewable Energy, Volume 34, Issue 3, 2009, pp. 667–673.

https://doi.org/10.1016/j.renene.2008.05.020

[15] Elsam: Livscyklusvurdering af hav- og landplacerede vindmølleparker, 02-170261, Elsam Engineering A/S, Kraftværksvej 53, Fredericia, DK, 2004.

[16] H. Hassing, S. Varming, “Life Cycle Assessment for Wind Turbines”. In 2001 European Wind Energy Conference and Exhibition. Tech-wise A/S, Kraftværksvej 53, DK-7000, 2–6.7.2001, Fredericia, Copenhagen, DK.

[17] M. Lenzen, J. Munksgaard, “Energy and CO2 life-cycle analyses of wind turbines”. Review and applications. Renewable Energy 26, pp. 339-362, 2002.

https://doi.org/10.1016/S0960-1481(01)00145-8

[18] M. Lenzen, U. Wachsmann, “Wind turbines in Brazil and Germany: an example of geographical variability in Life-cycle assessment”. Applied Energy 77,  pp. 119-130, 2004.

https://doi.org/10.1016/S0306-2619(03)00105-3

[19] L. Schleisner, “Life cycle assessment of a wind farm and related externalities”. Renewable Energy 20, pp. 279-288, 2000.

https://doi.org/10.1016/S0960-1481(99)00123-8

[20] Tech-wise A/S: Livscyklusvurdering af vindmøller., 01-488, Techwise A/S, Kraftværksvej 53, Fredericia, DK Schleisner, Tech-wise A/S, 2001.

[21] Final Report. Life Cycle Assessment Of Electricity Production from a Vestas V112 Turbine Wind Plant., 2011. [Online]. – Available: http://www.vestas.com.

[22] T. Bojko, M. Paslavskyi, M. Ruda, “Stability of composite landscape complexes: model formalization”. Scientific Bulletin of UNFU, 29(3), pp. 108–113, 2019.

https://doi.org/10.15421/40290323

[23] M. Ruda, A. Hyvlyud, V. Lentyakov, “Application of compartment analysis for modeling of environmental influence of consortium ecotones of protected type”, Scientific Bulletin of UNFU, 28(6), pp. 60–67, 2018.

https://doi.org/10.15421/40280612

[24] M. Stachowicz, Classification and evaluation of life cycle assessment tools. MS Thesis, Faculty of Process and Environmental Engineering, Technical University of Lodz, Lodz, Poland, 2001.

[25] І. Zbicinski, J. Stavenuiter, B. Kozlowska, H. P. M. Coevering, Product Design and Life Cycle Assessment. Uppsala, BUP, 2006.

[26] M. Goedkoop, M. Oele, J. Leijting, T. Ponsioen, E. Meijer, “Introduction to LCA with SimaPro”, 2016. [Online]. Available: https://www.presustainability.com/download/SimaPro8Introduction ToLCA.pdf.

[27] R. Sinha, M. Lennartsson, B. Frostell, “Environmental footprint assessment of building structures: a comparative study.” Building and Environment, 104, pp. 162-171, 2016.

https://doi.org/10.1016/j.buildenv.2016.05.012

[28] O. Pombo, K. Allacker, B. Rivela, J. Neila, “Sustainability assessment of energy saving measures: a multi-criteria approach for residential buildings retrofitting”. A case study of the Spanish housing stock. Energy and Buildings, 116, pp. 384–394, 2016.

https://doi.org/10.1016/j.enbuild.2016.01.019

[29] I. Zbicinski, J. Stavenuiter, B. Kozlowska, H. Van de Coevering, Product design and Life Cycle Assessment. The Baltic University Press, 4, 2006.

[30] European Wind Energy Agency, 2006. Retrieved on 28/04/2006. [Online]. Available: http://www.ewea.org/index.php?id=196.

[31] Vestas, 2005, Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines. Retrieved on 20/05/2006. [Online]. Available: http://www.vestas.com/pdf/miljoe/pdf/LCA%20V90-3.0%20MW%20onshore%20og%20offshore%20samt%20energibalance,%202005.pdf.

[32] State Energy Conservation Office (SECO). Retrieved on 01/06/2006 http://www.infinitepower.org/resglossary.htm.

[33] Vestas, 2004, General Specification V90 – 3.0 MW 60 Hz Variable Speed Turbine. Retrieved on 20/05/2006. [Online]. Available: http://mainegov-images.informe.org/doc/lurc/projects/redington/Documents....

[34] Vestas, 2005, Environmental Statement 2004, Retrieved on 28/04/2006. [Online].  Available: http://www.vestas.com/pdf/news/2005/Vestas2004_Miljo_UK.pdf.

[35] Danish Energy Authority, 2006. Energy Statistics 2004. Retrieved on 21/05/2006. [Online]. Available: http://www.ens.dk/graphics/Publikationer/Statistik_UK/Energy_Statistics_2004/html/large01e.htm.

[36] D. Ancona, J. Mc Veigh, “Wind Turbine”. Materials and Manufacturing Fact Sheet. Retrieved on 28/04/2006. [Online]. Available: http://www.generalplastics.com/uploads/technology/WindTurbine-MaterialsandManufacturing_FactSheet.pdf.

[37] Battele Clumbus Laboratories, “Energy use patterns in metallurgical and non-metallic mineral processing”. As cited in United Nations Centre 1992 on Transnational Corporations, Climate Change and Transnational Corporations Analysis and Trends. Retrieved on 20/05/2006. [Online]. Available: http://www.ieer.org/reports/climchg/ch7.pdf.

[38] Energy & Recycling. Retrieved on 20/05/2006. [Online]. Available: http://faculty.washington.edu/crowther/KidsZone/recycling.html.

[39] P. Bezrukih, “Ispol'zovanie jenergii vetra” [Use of wind energyTehnika, jekonomika, jekologija, Kolos, Moscow, 2008.

[40] SimaPro Manuals. [Online]. Available: http://www.pre.nl/content/manuals.

[41] J. Makovecjka, “Ocinjuvannja zhyttjevogho cyklu produkciji jak instrument vplyvu na minimizaciju vidkhodiv” [Assessing the product life cycle as a tool for influencing waste minimization] Elektronne naukove fakhove vydannja “Efektyvna ekonomika”, [Online]. Available: http://www.economy.nayka.com.ua/?op=1&z=1529.

[42] Copenhagen Sustainability Lectures, 2019. [Online]. Available: http://klima.ku.dk/sustainability_lectures/inger_andersen/.

[43] R. Plch, O. Pechacek, V. Vala, R. Pokorny, P. Bednar, P. Cudlin, “Energy, carbon and economic balance of Norway spruce monocultures and near-natural forests”, in Proc. of the 3rd annual Global Change and Resilience Conference, Brno, Czech Republic, 2013, pp. 50-55.

[44] R. Stojanov, “Climate change impacts and migration in Bangladesh”, in Proc. of the 3rd annual Global Change and Resilience Conference, Brno, Czech Republic, 2013, pp. 61-66.

[45] M. Goedkoop, The Eco-indicator 95 (NOH report 9514). Pre Consultants, Amersfoort, The Netherlands, 1995.

[46] D. Van de Meent, J. Bakker, O. Klepper, “Potentially affected fraction as an indicator of toxic stress, application of aquatic and terrestial ecosystems in the Netherlands”. 18th Annual Meeting of SETAC, November 1997, San Francisco.

[47] R. Muller-Wenk, Depletion of abiotic resources weighted on the base of “virtual” impacts of lower grade deposits in future. IWO Diskussionsbeitrag Nr. 57, Universitat St. Gallen: Switzerland, 1998.