Intensification of Drying Process During Activated Carbon Regenerationc

2018;
: pp. 263-271
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Heat-mass exchange processes during regenerated activated carbon drying was studied to determine the minimum height of heat-mass exchange zone and termination time of hot heating agent supply based on criterion equations and heat balance calculations. The heating agent temperature changes with time and the adsorbent bed height, as well as the time of moisture content change and drying rate were studied experimentally. Minimum height of a wet material layer ensuring rational use of the heating agent was determined. Heat amount which can be saved and amount of the energy accumulated by a part of the adsorbent bed for further drying were calculated. Regeneration method allows to reduce the amount of consumed specific energy.

[1] Ania C., Menendez J., Parra J., Pis J.: Carbon, 2004, 42, 1383. https://doi.org/10.1016/j.carbon.2004.01.010
https://doi.org/10.1016/j.carbon.2004.01.010

[2] Ania C., Parra J., Menendez J., Pis J.: Water Res., 2007, 41, 3299. https://doi.org/10.1016/j.watres.2007.05.006
https://doi.org/10.1016/j.watres.2007.05.006

[3] Bagreev A., Rahman H., Bandosz T.: Environ. Sci. Technol., 2000, 34, 4587. https://doi.org/10.1021/es001150c
https://doi.org/10.1021/es001150c

[4] Bagreev A., Rahman H., Bandosz T.: Carbon, 2001, 39, 1319. https://doi.org/10.1016/S0008-6223(00)00266-9
https://doi.org/10.1016/S0008-6223(00)00266-9

[5] Zaporozec V.: RF Pat. 2132221. Publ. June 27, 1999.

[6] Banuelos J., Rodrigue F., Rocha J., Bustos E.: Environ. Sci. Technol., 2013, 47, 7927. https://doi.org/10.1021/es401320e
https://doi.org/10.1021/es401320e

[7] Berenguer R., Marco-Lozar J., Quijada C. et al.: Carbon, 2010, 48, 2734. https://doi.org/10.1016/j.carbon.2010.03.071
https://doi.org/10.1016/j.carbon.2010.03.071

[8] Garcia-Oton M., Montilla F., Lillo-Rodenas M. et al.: J. Appl. Electrochem., 2005, 35, 319. https://doi.org/10.1007/s10800-004-7470-3
https://doi.org/10.1007/s10800-004-7470-3

[9] Han Y., Quan X., Ruan X., Zhang W.: Sep. Purif. Technol., 2008, 59, 43. https://doi.org/10.1016/j.seppur.2007.05.026
https://doi.org/10.1016/j.seppur.2007.05.026

[10] Weng C.-H., Hsu M.-S.: Sep. Purif. Technol., 2008, 64, 227. https://doi.org/10.1016/j.seppur.2008.10.006
https://doi.org/10.1016/j.seppur.2008.10.006

[11] Zhang H.: Chem. Eng. J., 2002, 85, 81. https://doi.org/10.1016/S1385-8947(01)00176-0
https://doi.org/10.1016/S1385-8947(01)00176-0

[12] Liu X., Quan X., Bo L. et al.: Carbon, 2004, 42, 415. https://doi.org/10.1016/j.carbon.2003.12.032
https://doi.org/10.1016/j.carbon.2003.12.032

[13] Liu X., Yu G., Han W.: J. Hazard. Mat., 2007, 147, 746. https://doi.org/10.1016/j.jhazmat.2007.01.076
https://doi.org/10.1016/j.jhazmat.2007.01.076

[14] Yuen F.-K., Hameed B.: Adv. Colloid Interface., 2009, 149, 19. https://doi.org/10.1016/j.cis.2008.12.005
https://doi.org/10.1016/j.cis.2008.12.005

[15] Nahma S.-W., Shim W.-G., Park Y.-K., Kim S.-C.: Chem. Eng. J., 2012, 210, 500. https://doi.org/10.1016/j.cej.2012.09.023
https://doi.org/10.1016/j.cej.2012.09.023

[16] Sabio E., Gonzalez E., Gonzalez J. et al.: Carbon, 2004, 42, 2285. https://doi.org/10.1016/j.carbon.2004.05.007
https://doi.org/10.1016/j.carbon.2004.05.007

[17] Han X., Lin H., Zheng Y.: Chem. Eng. J., 2014, 243, 315. https://doi.org/10.1016/j.cej.2013.12.074
https://doi.org/10.1016/j.cej.2013.12.074

[18] Lim J.-L., Okada M.: Ultrason. Sonochem., 2005, 12, 277. https://doi.org/10.1016/j.ultsonch.2004.02.003
https://doi.org/10.1016/j.ultsonch.2004.02.003

[19] Zhang G., Wang S., Liu Z.: Environ. Eng. Sci., 2004, 20, 57. https://doi.org/10.1089/109287503762457581
https://doi.org/10.1089/109287503762457581

[20] Tang S., Lu N., Li J. et al.: Carbon, 2013, 53, 380. https://doi.org/10.1016/j.carbon.2012.11.028
https://doi.org/10.1016/j.carbon.2012.11.028

[21] Horng R., Tseng I.-C.: J. Hazard. Mat., 2008, 154, 366. https://doi.org/10.1016/j.jhazmat.2007.10.033
https://doi.org/10.1016/j.jhazmat.2007.10.033

[22] Melnyk L., Mank V.: Proizvodstvo Spirta i Likerovodochnykh Izdeliy, 2004, 4, 14.

[23] Melnyk L., Mank V., Bila H., Tkachuk N.: Kharchova Promyslovist, 2005, 4, 53.

[24] Ukhanov S., Starkova N., Galata S., Khmelevskaya K.: Vestnik PGTU, 2009, 9, 184.

[25] Kurniasari L., Djaeni M., Purbasari A.: Reaktor, 2012, 13, 178. https://doi.org/10.14710/reaktor.13.3.178-184
https://doi.org/10.14710/reaktor.13.3.178-184

[26] Fiorentin L., Menon B., Alves J. et al.: Acta Scientiarum Technology, 2010, 32, 147.
https://doi.org/10.4025/actascitechnol.v32i2.8242

[27] Fiorentin L., Menon B., de Barros S. et al.: Revista Brasileira de Engenharia Agrícola e Ambiental, 2010, 14, 653.
https://doi.org/10.1590/S1415-43662010000600012

[28] Cotet L., Fort C., Danciu V., Maicaneanu A.: E3S Web of Conferences, 2013, 1, 25007. https://doi.org/10.1051/e3sconf/20130125007
https://doi.org/10.1051/e3sconf/20130125007

[29] Atamaniuk V., Khodorivskyi R., Petrus R.: Nauk. Pratsi Odeskoi Nats. Akad. Kharchovykh Tekhn., 2012, 41, 68.

[30] Fedorenko O., Misiats V.: Tekhnolohii ta Dizain, 2012, 2, 1.

[31] Tevyashev A., Shitikov E.: Vost.-Evrop. Zh. Peredovykh Tekhn., 2012, 4, 38.

[32] Ukhanov S., Ryabov V., Nyashin V., Kartashov A.: Vestnik PGTU, 2011, 12, 86.

[33] Blaznin Yu., Gorokhov V., Golubev V.: Tekhn. Gazy, 2009, 4, 47.

[34] Atamaniuk V., Huzova I., Hnativ Z., Mykychak B.: Skhidno-Yevrop. Zh. Peredovykh Tekhn., 2016, 5, 10.

[35] Mykychak B, Biley P., Kindzera D.: Chem. Chem. Technol., 2013, 7, 195.

[36] Atamaniuk V.: Khim. Promyslovist Ukrainy, 2007, 4, 24.

[37] Gumnitskii Ya., Lyuta O.: Teor. Osnovy Khim. Tekhn., 2014, 48, 450.