Modification of Silicon Surface with Silver, Gold and Palladium Nanostructures via Galvanic Substitution in DMSO and DMF Solutions

2018;
: pp. 305-309
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine

The investigation results of silver, palladium and gold nanoscale particles deposition on the silicon surface in the DMSO and DMF media are presented. The influence of organic aprotic solvents on the geometry of metal particles and their distribution on the substrate is described. It is shown that solutions of stable metal complexes ([Ag (CN)2] – , [AuCl4] – ) are the main factor in the formation of discrete nanoparticles with a small range of sizes and uniform distribution along the substrate surface, as well as nanostructured films. It has been established that the increase in temperature from 313 to 343 K changes the structure of the gold deposit from the film to the dispersed one, occurred due to a significant increase in the rate of the electrogenerating reaction on the silicon surface microanodes and desorption of organic solvents molecules from the metal nuclei.

[1] Ego T., Hagihara T., Moriia Y. et al.: ECS Trans., 2013, 50, 143. https://doi.org/10.1149/05052.0143ecst
[2] Kim T., Braun G., She Z. et al.: ACS Appl. Mater. Interfaces., 2016, 8, 30449. https://doi.org/10.1021/acsami.6b09518
[3] Ensafi A., Rezaloo F., Rezaei B.: Sensor. Actuat. B-Chem., 2016, 231, 239. https://doi.org/10.1016/j.snb.2016.03.018
[4] Lahiri A., Wen R., Kuimalee S. et al.: Lett. J. Appl. Phys., 2013, 46, 275303. https://doi.org/10.1088/0022-3727/46/27/275303
[5] Itasaka H., Nishi M., Shimizu M., Hirao K.: J. Electrochem. Society, 2016, 163, D743. https://doi.org/10.1149/2.0261614jes
[6] Sayed S., Wang F., Malac M. et al.: ASC Nano, 2009, 3, 2809. https://doi.org/10.1021/nn900685a
[7] Yamada N., Atsushiba H., Sakamoto S. et al.: ECS Trans., 2015, 69, 59. https://doi.org/10.1149/06939.0059ecst
[8] Raygani A., Magagnin L.: ECS Transactions, 2012, 41, 3-8. https://doi.org/10.1149/1.3699373
[9] Gutes A., Carraro C., Maboudian R.: ACS Appl. Mater. Interfaces, 2011, 3, 1581. https://doi.org/10.1021/am200144k
[10] Yae S., Enomoto M., Atsushiba H. et al.: ECS Transactions, 2013, 53, 99. https://doi.org/10.1149/05306.0099ecst
[11] Gorostiza P., Servat J., Morante J., Sanz F.: Thin Solid Films, 1996, 275, 12. https://doi.org/10.1016/0040-6090(95)07009-5
[12] Yae S., Kawamoto Y., Tanaka H. et al.: Electrochem. Comm., 2003, 5, 632. https://doi.org/10.1016/S1388-2481(03)00146-2
[13] Yae S., Kobayashi T., Kawagishi T. et al.: Solar Energy, 2006, 80, 701. https://doi.org/10.1016/j.solener.2005.10.011
[14] Wei Q., Shi Y., Sun K-Q., Xu B-Q.: Chem. Comm., 2016, 52, 3026. https://doi.org/10.1039/C5CC07474F
[15] Yae S., Morii Y., Fukumuro N., Matsuda H.: Nanoscale Res. Lett., 2012, 7, 352. https://doi.org/10.1186/1556-276X-7-352
[16] Sadakane D., Yamakawa K., Fukumuro N., Yae S.: ECS Transactions, 2015, 69, 179. https://doi.org/10.1149/06902.0179ecst
[17] daRosa C., Maboudian R., Iglesia E.: J. Electrochem. Society, 2008, 155, E70. https://doi.org/10.1149/1.2907155
[18] Scudiero L., Fasasi A., Griffiths P.: Applied Surface Science, 2011, 257, 4422. https://doi.org/10.1016/j.apsusc.2010.12.078
[19] Papaderakis A., Mintsouli I., Georgieva J., Sotiropoulos S.: Catalysts, 2017, 7, 80. https://doi.org/10.3390/catal7030080
[20] Polavarapu L., Liz-Marz´an L.: Nanoscale, 2013, 5, 4355. https://doi.org/10.1039/c3nr01244a
[21] Kuntyi O.: Mater. Sci., 2006, 42, 681.
[22] Dobrovets’ka O., Kuntyi O., Zozulya G. et al.: Mater. Sci., 2015, 51, 418.
[23] Kuntyi O., Stakhira P. Cherpak V. et al.: Micro Nano Lett., 2011, 6, 592.
[24] Zhike Wang, Donghui Chen, Liang Chen.: Hydrometallurgy, 2007, 89, 196. https://doi.org/10.1016/j.hydromet.2007.07.005
[25] Kuntyi O.: Electrokhimia ta Morphologia Dispersnykh Metaliv. Vyd-vo LP, Lviv 2008.