Kinetics of Os(VIII) Catalyzed Oxidation of 2-Pyrrolidine Carboxylic Acid in Alkaline Medium using Sodium Periodate as Oxidant: A Mechanistic Approach

: pp. 326 - 333
Department of Chemistry, University of Lucknow, Lucknow, U.P., India
Department of Chemistry, University of Lucknow, Lucknow, U.P., India
Chemical Laboratories Feroze Gandhi College, Raebareli, U.P., India
Department of Chemistry, University of Lucknow, Lucknow, U.P., India

The present paper deals with the kinetic and mechanistic investigation of Os(VIII) catalyzed oxidation of 2-pyrrolidinecarboxylic acid by sodium periodate (NaIO4) in alkaline medium in the temperature range of 303‒318 K. The experimental result shows a first order kinetics with respect to Os(VIII) and periodate while positive effect with respect to substrate i.e., 2-pyrrolidinecarboxylic acid was observed. The reaction showed negative effect for [OH-]. Negligible effect of Hg(OAc)2 and ionic strength of the medium was observed. The reaction is carried out in the presence of mercuric acetate as a scavenger. The reaction of sodium periodate and 2-pyrrolidinecarboxylic acid in alkaline medium shows 2:1 stoichiometry. The values of rate constants observed at different temperatures were utilized to calculate the activation parameters. A mechanism involving the complex formation between a catalyst, substrate and oxidant has been proposed. L-glutamic acid has been identified as the main oxidation product of the reaction using chromatography and spectroscopy. Based on kinetic data, the reaction stoichiometry and product analysis of the reaction a feasible mechanism has been proposed. The rate law has been derived from obtained kinetic data.

[1] Nelson D., Cox M.: Lehninger Principles of Biochemistry, 4th edn. W.H. Freeman and Co., New York 2007.

[2] Hiremath C., Kiran T., Nandibewoor S.: J. Mol. Catal. A., 2006, 248, 163.

[3] Seregar V., Hiremath C., Nandibewoor S.: J. Phys. Chem., 2006, 220, 615.

[4] List B., Lerner R., Barbes C.: J. Am. Chem. Soc., 2000, 122, 2395.

[5] Das A.: Coord Chem., 2001, 213, 307.

[6] Srivastava S., Patel R.: World J. Pharm. Pharm. Sci., 2014, 3, 365.

[7] Gupta M., Srivastava S.: Bull. Catal. Soc. India, 2015, 14, 1.

[8] Vijayasri K., Rajaram J., Kuriacose J.: J. Chem. Sci., 1985, 95, 573.

[9] Duk F.: J. Am. Chem. Soc., 1947, 69, 3054.

[10] Buistc G., Bunton A., Hipperson W.: J. Chem. Soc. B, 1971, 2128.

[11] Maros L., Molnar-Perel I., Schissel E., Szerdahelyi V.: J. Chem. Soc. Perkin Trans., 1980, 11, 39.

[12] Dahlgre G., Reed K.: J. Am. Chem. Soc., 1967, 89, 1380.

[13] Rao M., Sethuram B., RaoN.: J. Indian Chem. Soc., 1980, 57, 149.

[14] Rao D., Sridevi M., Vani P.: Indian J. Appl. Res., 2013, 3, 585.

[15] Mendham J., Denney R., Barnes J., Thomas M.: Vogel’s Text Book of Quantitative Chemical Analysis, 6th edn. Pearson Education, Delhi 2003.

[16] Tuwar S., Nandibewoor S., Raju J.: Trans. Met. Chem., 1991, 16, 430.

[17] Feigl F.: Spot Tests in Organic Analysis. Elsevier, New York 1975.

[18] Nelson D., Cox M.: Lehningers, Principles of Biochemistry, 4th edn. Freeman and Co., New York 2007.

[19] Wilson K., Walker J.: Practical Biochemistry, 5th edn. Cambridge University Press, Cambridge 2005.

[20] Devendra M., Gupta Y.: J. Chem. Soc., Dalton Trans., 1977, 1085.

[21] Sethuram B.: Some Aspects of Electron Transfer Reactions Involving Organic Molecules. Allied Publ. Ltd., Mumbai 2003.

[22] Laidler J.: Chemical Kinetics, 3rd edn. Pearson Education Ptc. Ltd., New Delhi 2004.

[23] Upadhyay S., Agrawal M.: Indian J. Chem., 1977, 15A, 709.

[24] Sutin N.: Annu. Rev. Phys. Chem., 1966, 17, 119.

[25] Lancaster M., Murray R.: J. Chem. Soc. A, 1971, 2755.

[26] Martinez M., Pitarque M., Eldik R.: J. Chem. Soc., Dalton Trans., 1996, 2665.

[27] Shettar R., Hiremath M., Nandibewoor S.: Electron. J. Chem., 2005, 9, 91.

[28] Upadhyay S.: Int. J. Chem. Kinet., 1983, 15, 669.