MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones

2020;
: pp. 169 - 176
1
Department of Chemistry, MSS’s Arts, Science and Commerce College, Ambad
2
Department of Chemistry, K.S.K.W. Arts, Science and Commerce College, CIDCO, Uttamnagar
3
Department of Chemistry, Milind college of science

We have studied a series of mixed metal oxides of Mg-Al by a simple co-precipitation technique. Various characterization techniques, including XRD, SEM, EDS, TEM, BET and CO2-TPD were carried out to investigate their physicochemical properties. An efficient and facile protocol has been documented for the synthesis of chalcones using different aldehydes and acetophenone using Mg-Al oxide under reflux conditions in ethanol affording good to excellent yields. Recyclability of a catalyst is a significant feature of this protocol. Moreover, it was proposed that MgO can disperse and increase the basicity, pore size and catalytic activity.

  1. Kantam M., Pal U., Sreedhar B., Choudary B.: Adv. Synth. Catal., 2007, 349, 1671. https://doi.org/10.1002/adsc.200600525
  2. Aramendía M., Borau V., Jiménez C. et al.: J. Catal., 1996, 161, 829. https://doi.org/10.1006/jcat.1996.0246
  3. Díez V., Apesteguía C., Di Cosimo J.: J. Catal., 2006, 240, 235. https://doi.org/10.1016/j.jcat.2006.04.003
  4. Zhang G., Hattori H., Tanabe K.: Appl. Catal., 1988, 36, 189. https://doi.org/10.1016/S0166-9834(00)80114-1
  5. Di Cosimo J., Díez V., Apesteguía C.: Appl. Catal. A, 1996, 137, 149. https://doi.org/10.1016/0926-860X(95)00289-8
  6. Di Cosimo J., Apesteguía C.: J. Mol. Catal. A, 1998, 130, 177. https://doi.org/10.1016/S1381-1169(97)00204-5
  7. Hattori H.: Chem. Rev., 1995, 95, 537. https://doi.org/10.1021/cr00035a005
  8. Wang Y., Zhu J., Cao J. et al.: Micropor. Mesopor. Mater., 1998, 26, 175. https://doi.org/10.1016/S1387-1811(98)00231-5
  9. Tu M., Davis R.: J. Catal., 2001, 199, 85. https://doi.org/10.1006/jcat.2000.3145
  10. Aramendía M., Borau V., Jiménez C. et al.: Appl. Catal. A, 2003, 244, 207. https://doi.org/10.1016/S0926-860X(02)00213-2
  11. Ranjit K., Klabunde K.: Chem. Mater., 2005, 17, 65. https://doi.org/10.1021/cm040360b
  12. Utamapanya S., Klabunde K., Schlup J.: Chem. Mater., 1991, 3, 175. https://doi.org/10.1021/cm00013a036
  13. Richards R., Volodin A., Bedilo A., Klabunde K.: Phys. Chem. Chem. Phys., 2003, 5, 4299. https://doi.org/10.1039/b309059k
  14. Martin M., Narske R., Klabunde K.: Micropor. Mesopor. Mater., 2005, 83, 47. https://doi.org/10.1016/j.micromeso.2005.04.003
  15. Richards R., Li W., Decker S. et al.: J. Am. Chem. Soc., 2000, 122, 4921. https://doi.org/10.1021/ja994383g
  16. Stankic S., Müeller M., Diwald O. et al.: Angew. Chem. Int. Ed., 2005, 44, 4917. https://doi.org/10.1002/anie.200500663
  17. Di Cosimo J., Diez V., Xu M., Iglesia E.: J. Catal., 1998, 178, 499. https://doi.org/10.1006/jcat.1998.2161
  18. Corma A., Iborra S., Miquel S., Primo J.: J. Catal., 1998, 173, 315. https://doi.org/10.1006/jcat.1997.1930
  19. Liu Y., Lotero E., Goodwin J., Mo X.: Appl. Catal. A, 2007, 331, 138. https://doi.org/10.1016/j.apcata.2007.07.038
  20. Prescott H., Li Z., Kemnitz E. et al.: J. Catal., 2005, 234, 119. https://doi.org/10.1016/j.jcat.2005.06.004
  21. Velu S., Swamy C.: Appl. Catal. A, 1994, 119, 241. https://doi.org/10.1016/0926-860X(94)85194-8
  22. Rao K., Gravelle M., Valente J., Figueras F.: J. Catal., 1998, 173, 115. https://doi.org/10.1006/jcat.1997.1878
  23. Climent M., Corma A., Iborra S., Primo J.: J. Catal., 1995, 151, 60. https://doi.org/10.1006/jcat.1995.1008
  24. Corma A., Fornes V., Martinaranda R., Rey F.: J. Catal., 1992, 134, 58. https://doi.org/10.1016/0021-9517(92)90209-Z
  25. Dimmock J., Elias D., Beazely M., Kandepu N.: Curr. Med. Chem., 1999, 6, 1125.
  26. Go M., Wu X., Lui L.: Curr. Med. Chem., 2005, 12, 483. https://doi.org/10.2174/0929867053363153
  27. Nowakowka Z.: Eur. J. Med. Chem., 2007, 42, 125. https://doi.org/10.1016/j.ejmech.2006.09.019
  28. Khobragade C., Bodade R., Shine M. et al.: J. Enzym. Inhib. Med. Chern., 2008, 23, 341. https://doi.org/10.1080/14756360701608585
  29. Sogawa S., Nihro Y., Ueda H. et al.: Biol. Pharm. Bull., 1994, 17, 251. https://doi.org/10.1248/bpb.17.251
  30. Nerya O., Musa R., Khatib S. et al.: Phytochem., 2004, 65, 1389. https://doi.org/10.1016/j.phytochem.2004.04.016
  31. Prakash O., Kumar A., Sadana A. et al.: Tetrahedron, 2005, 61, 6642. https://doi.org/10.1016/j.tet.2005.03.035
  32. Prasad R., Rao L., Prasoona L. et al.: Bioorg. Med. Chem. Lett., 2005, 15, 5030. https://doi.org/10.1016/j.bmcl.2005.08.040
  33. Raghavan S., Anuradha K.: Tetrahedron Lett., 2002, 43, 5181. https://doi.org/10.1016/S0040-4039(02)00972-3
  34. Bohn B.: Introduction to Flavonoids, Harwood Academic, Amsterdam 1998.
  35. Azad M., Munawar M., Siddiqui H.: J. Appl. Sci., 2007, 7, 2485. https://doi.org/10.3923/jas.2007.2485.2489
  36. Prasad R., Kumar P.P., Kumar P.R., Rao A.: E-J. Chem., 2008, 5, 144. https://doi.org/10.1155/2008/602458
  37. Iglesias M., Marinas J., Sinisterra J.: Tetrahedron, 1987, 43, 2335. https://doi.org/10.1016/S0040-4020(01)86819-8
  38. Savanth M., Chakraborti K.: J. Mol. Catal., 2006, 244, 20. https://doi.org/10.1016/j.molcata.2005.08.039
  39. Calloway N., Green L.: J. Am. Chem. Soc., 1937, 59, 809. https://doi.org/10.1021/ja01284a011
  40. Chitra M., Rajendran T., Duraipandiyan V. et al.: Indian J. Sci. Technol., 2010, 3, 890.
  41. Narender T., K.P. Reddy. Tetrahedron Lett ., 2007,48, 3177. https://doi.org/10.1016/j.tetlet.2007.03.054
  42. Mazza L., Guaram A.: Synthesis, 1980, 1980, 41. https://doi.org/10.1055/s-1980-28916
  43. Iranpoor I., Kazemi F.: Tetrahedron, 1998, 54, 9475. https://doi.org/10.1016/S0040-4020(98)00575-4
  44. Rendy R., Zhang Y., McElrea A.: J. Org. Chem., 2004, 69, 2340. https://doi.org/10.1021/jo030327t
  45. Hua Q., Dabin L., Chunxu L.: Ind. Eng. Chem. Res., 2011, 50, 1146. https://doi.org/10.1021/ie101790k
  46. Katkar S., Mohite P., Gadekar L. et al.: Cent. Eur. J. Chem., 2010, 8, 320. https://doi.org/10.2478/s11532-009-0151-7
  47. Katkar S., Arbad B., Lande M.: Arab. J. Sci. Eng., 2010, 36, 39. https://doi.org/10.1007/s13369-010-0010-z
  48. Katkar S., Mohite P., Gadekar L. et al.: Chinese Chem. Lett., 2010, 21, 421. https://doi.org/10.1016/j.cclet.2009.10.020
  49. Katkar S., Mohite P., Gadekar L. et al.: Green Chem. Lett. Rev., 2010, 3, 287. https://doi.org/10.1080/17518253.2010.482065
  50. Katkar S., Lande M., Arbad B., Rathod S.: Bull. Korean Chem. Soc., 2010, 31, 1301. https://doi.org/10.5012/bkcs.2010.31.5.1301
  51. Katkar S., Lande M., Arbad B., Gaikwad S.: Chinese J. Chem., 2011, 29, 199. https://doi.org/10.1002/cjoc.201190052
  52. Gadekar L., Katkar S., Mane S. et al.: Bull. Korean Chem. Soc., 2009, 30, 2532. https://doi.org/10.5012/bkcs.2009.30.11.2532
  53. Gadekar L., Mane S., Katkar S. et al.: Cent. Eur. J. Chem., 2009, 7, 550. https://doi.org/10.2478/s11532-009-0050-y
  54. Gadekar L., Katkar S., Vidhate K. et al.: Bull. Catal. Soc. India, 2008, 7, 79.
  55. Rathod S., Gadekar L., Katkar S. et al.: Bull. Catal. Soc. India, 2009, 8, 16.
  56. Shaikh U., Katkar S., Vidhate K. et al.: J. Ind. Chem. Soc., 2012, 88, 1465.
  57. Lande M., Navgire M., Rathod S. et al.: J. Ind. Eng. Chem., 2012, 18, 277. https://doi.org/10.1016/j.jiec.2011.11.048
  58. Vidhate K., Katkar S., Arbad B., Lande M.: Adv. App. Sci. Res., 2012, 3, 713.
  59. Katkar S., Kategaonkar A.: J. Chem. Chem. Sci., 2015, 5, 591.
  60. Katkar S., Kategaonkar A.: OCAIJ, 2015, 11, 415.
  61. Raghav N., Malik P.: Adv.Appl. Sci. Res., 2011, 2, 410.