Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature

2021;
: pp. 81 - 88
1
Lviv Polytechnic National University
2
Institute of Materials & Machine Mechanics, Slovak Academy of Sciences
3
Lviv Polytechnic National University
4
Industrial Company “Autonomous Power Sources”

Al3Ni and Al3Ti alloys were prepared by arc melting and exposed to chemical leaching in 5M NaOH at room temperature. In case of Al3Ni alloy, Al reached phases react with the leaching solution to produce nanoporous nickel with a pore diameter in the range of ~10–20 nm. Only pure Al phase of Al3Ti alloy chemically reacts with the production of a dense wrinkled surface with a wrinkle size of ~50–100 nm.

  1. Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013.
  2. Gao H., Wang J., Chen X. et al.: Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007
  3. Kumar K., Preuss K., Titirici M.-M. et al.: Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505
  4. Zhu C., Du D., Eychmüller A. et al.: Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255
  5. Huang A., He Y., Zhou Y. et al.: J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5
  6. Pia G., Brun M., Aymerich F. et al.: J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5
  7. Zuo X., Zhu J., Müller-Buschbaum P. et al.: Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013
  8. Shepida M., Kuntyi O., Nichkalo S. et al.: Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464
  9. Wafiroh S., Abdulloh A., Widati A.: Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229
  10. Saldan I., Stetsiv Y., Makogon V., et al.: Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085
  11. McCue I., Benn E., Gaskey B. et al.: Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739
  12. Rahman Md.A., Zhu X., Wen C.: Int. J. Electrochem. Sci., 2015, 10, 3767.
  13. Zhang H., Han Z., Deng Q.: Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694
  14. Du H., Zhou C., Xie X. et al.: Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109
  15. Hakamada M., Mabuchi M.: J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031
  16. Dan Z., Qin F., Sugawara Y. et al.: Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018
  17. Qiu H.-J., Kang J., Liu P. et al.: J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070
  18. Wang L., Balk T.: Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600
  19. Sechi E., Vacca A., Mascia M. et al.: Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017
  20. Kuntyi O., Ivashkin V., Yavorskii V. et al.: Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158
  21. Kim S., Jung H.-D., Kang M.-H. et al.: Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011
  22. Panagiotopoulos N., Jorge A., Rebai I. et al.: Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054
  23. Zhang F., Li P., Yu J. et al.: J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19
  24. Erlebacher J., Aziz M., Karma A.: Nature, 2001, 410, 450. https://doi.org/10.1038/35068529
  25. Zhao W., Liu N., Rong J. et al.: Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866
  26. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
  27. Saldan I., Burtovyy R., Becker H.W. et al.: Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
  28. Saldan I.: Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062
  29. Gosalawit-Utke R., Nielsen T. K., Saldan I. et al.: J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903
  30. Miettinen J.: Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002
  31. Wang H., Reed R., Gebelin J. et al.: Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007
  32. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050