Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass

2021;
: pp. 118 - 124
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.

  1. http://agravery.com/uk/posts/show/12
  2. Deublein D., Steinhauser A.: Biogas from Waste and Renewable Resources. Wiley-VCH 2008. https://doi.org/10.1002/9783527621705
  3. Hejnfelt A., Angelidaki I.: Biomass Bioenerg., 2009, 33, 1046. https://doi.org/10.1016/j.biombioe.2009.03.004
  4. Brostow W., Menard K., Menard N.: Chem. Chem. Technol., 2009, 3, 173.
  5. Nyakuma B., Oladokun O.: Chem. Chem. Technol., 2017, 11, 392. https://doi.org/10.23939/chcht11.03.392
  6. Nyakuma B.: Environ. Climate Technol., 2015, 15, 77. https://doi.org/10.1515/rtuect-2015-0007
  7. Pavliukh L., Boichenko S., Onopa V. et al.: Chem. Chem. Technol., 2019, 13, 101. https://doi.org/10.23939/chcht13.01.101
  8. Halyshko V.: Monitoring Birzhovogo Rynku, 2014, 3, 6.
  9. Gosovskiy R., Kindzera D., Atamanyuk V.: Chem. Chem. Technol., 2016, 10, 459. https://doi.org/10.23939/chcht10.04.459
  10. Kindzera D., Atamanyuk V., Hosovskyi R.: Visnyk Odesa Nats. Acad., 2015, 42, 194.
  11. Akpinar E.: Int. Commun. Heat Mass Transfer, 2004, 31, 585. https://doi.org/10.1016/S0735-1933(04)00038-7
  12. Resio A., Aguerre, R., Suarez C.: Braz. J. Chem. Eng., 2005, 22, 303. https://doi.org/10.1590/S0104-66322005000200019
  13. Faria L., Rocha S.: Braz. J. Chem. Eng., 2000, 17, 4. https://doi.org/10.1590/S0104-66322000000400013
  14. Messai S. et al.: Therm. Sci., 2014, 18, 443. https://doi.org/10.2298/TSCI120715108M
  15. Prado M., Sartori D.: Braz. J. Chem. Eng., 2008, 25, 39. https://doi.org/10.1590/S0104-66322008000100006
  16. Akpinar Е., Toraman S.: Heat Mass Transfer, 2015, 52, 1. https://doi.org/10.1007/s00231-015-1729-6
  17. Wami E., Ibrahim M.: Int. J. Sci. Eng. Res., 2014, 5, 121.
  18. Snezhkin Yu., Korinchuk D., Vorobiov L., Kharin O.: Prom. Teplotechn., 2006, 28, 41.
  19. [Kindzera D., Atamanyuk V., Pelekh M., Hosovskyi R.: Chem., Technol. Appl. Substances, 2019, 2, 110. https://doi.org/10.23939/ctas2019.01.110
  20. Atamanyuk, V., Gumnytsky Ya.: Naukovi Osnovy Filtracijnogo Sushinnya Dispersnykh Materialiv. Vyd-vo Lviv Polytech., Lviv 2013.
  21. Atamanyuk V., Matkivska I., Barna I.: Visnyk Nats. Univ. "Lvivska politechnika". 2015, 812, 302.
  22. Atamanyuk V., Huzova I., Gnativ Z.: Food Sci. Technol., 2017, 11, 21. https://doi.org/10.15673/fst.v11i4.727
  23. Atamanyuk V. Humnyckyj Ja., Mosjuk M.: Naukovyj Visnyk NLTU Ukrainy, 2011, 21, 95.