Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa

2021;
: pp. 226 - 232
1
Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology
2
Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology

Isobaric vapor-liquid equilibrium (VLE) data for binary system of water + 2-azido-N,N-dimethylethanamine (DMAZ) was measured at 4 kPa. The results showed an azeotropic point at x1 = 0.985 and T = 302.17 K. The data was correlated with nonrandom two-liquid (NRTL), Wilson and universal quasi-chemical activity coefficient (UNIQUAC) models for the liquid phase. A comparison of the model performances was made using of the criterion of the average absolute deviation, standard deviation and mean standard deviation in boiling-point temperature. The results indicated that the NRTL activity coefficient model satisfactorily correlated the VLE data.

  1. Schmidt E.: Hydrazine and Its Derivatives, 2nd edn. Wiley, New York 2001
  2. Agrawal J.: High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Weinheim 2010.
  3. Reddy G., Song J., Mecchi M., Johnson M.: Res.-Gen. Tox. En., 2010, 700, 26. https://doi.org/10.1016/j.mrgentox.2010.04.019
  4. Aronson J.: The Synthesis and Characterization of Energetic Materials from Sodium Azide, PhD Thesis, Georgia Institute of Technology 2004
  5. Chouireb N., Crespo E., Pereira L. et al.: J. Chem. Eng. Data, 2018, 63, 2394. https://doi.org/10.1021/acs.jced.7b00945
  6. Li G., Yin X.: J. Chem. Eng. Data, 2018, 63, 2009. https://doi.org/10.1021/acs.jced.8b00005
  7. Liu L., Zhong Y., Zhang R., Tan W.: J. Chem. Eng. Data, 2015, 60, 3268. https://doi.org/10.1021/acs.jced.5b00500
  8. Figueiredo B., Da Silva F., Silva C.: Ind. Eng. Chem. Res., 2013, 52, 16044. https://doi.org/10.1021/ie402575c
  9. Milzetti J., Nayar D., van der Vegt N.: J. Phys. Chem. B, 2018, 2018, 5515. https://doi.org/10.1021/acs.jpcb.7b11831
  10. Vranes M., Tot A., Papovic S. et al.: J. Chem. Thermodyn., 2015, 81, 66. https://doi.org/10.1016/j.jct.2014.10.002
  11. Torcal M., Langa E., Pardo J. et al. J. Chem. Thermodyn., 2016, 97, 88. https://doi.org/10.1016/j.jct.2016.01.008
  12. Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 107, 216. https://doi.org/10.1016/j.jct.2016.12.027
  13. Ma Y., Gao J., Li M. et al.: J. Chem. Thermodyn., 2018, 122, 154. https://doi.org/10.1021/je400531a
  14. Lemos C., Rade L., Gilfrida W. et al.: J. Chem. Thermodyn. 2018, 123, 46. https://doi.org/10.1016/j.jct.2018.03.023
  15. Kokan T., Olds J., Seitzman J., Ludovice P.: Acta Astronaut., 2009, 65, 967. https://doi.org/10.1016/j.actaastro.2009.01.064
  16. Smith J., Van Ness H.: Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York 1987.
  17. Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 105, 385. https://doi.org/10.1016/j.jct.2016.10.038
  18. Poling B., Prausnitz J., O΄Connell J.: The Properties of Gases and Liquids, 5th edn. McGraw Hill, New York 2001
  19. Mali N., Yadav S., Ghuge P., Joshi S.: J. Chem. Eng. Data, 2017, 62, 4356. https://doi.org/10.1021/acs.jced.7b00704
  20. Yang J., Pan X., Yu M. et al.: J. Mol. Liq., 2018, 268, 19. https://doi.org/10.1016/j.molliq.2018.07.038
  21. Li M., Xu X., Li X. et al.: Sci. Rep., 2017, 7, 9497. https://doi.org/10.1038/s41598-017-09088-2
  22. Jia H., Wang H., Ma K. et al.: Chin. J. Chem. Eng., 2018, 26, 993. https://doi.org/10.1016/j.cjche.2017.11.003