Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and γ-Alumina

2021;
: pp. 263 - 273
1
Ceramics Department, Materials and Energy Research Center
2
Ceramics Department, Materials and Energy Research Center
3
Ceramics Department, Materials and Energy Research Center
4
Ceramics Department, Materials and Energy Research Center; College of Materials Science and Engineering, Nanjing Forestry University
5
Ceramics Department, Materials and Energy Research Center
6
College of Materials Science and Engineering, Nanjing Forestry University

Removal of lead from aqueous solutions was studied using nanocomposite absorbent of bentonite/$\gamma$-alumina. The novel absorbent was characterized using XRD, FT-IR and SEM-EDX. Absorption process optimization using response surface methodology (RSM) and experimental design was performed with central composite design technique. The effects of Pb(II) initial concentration, adsorbent dosage, and composite percentage on Pb(II) removal percentage and adsorption capacity were examined. The adsorption capacity of 166.559 mg/g and removal % of 82.9887 with desirability equal to 0.763 were obtained for optimal initial concentration of 200 mg•1-1, adsorbent dosage of 0.5 mg•1-1, and composite percentage of 7.08 % determined using RSM design. The equilibrium adsorption data were investigated by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. It was found that Freundlich isotherm model fits better compared with other models.

  1. Gumpu M., Sethuraman S., Krishnan U., Rayappan J.: Sensor Actuat.B-Chem, 2015, 213, 515. https://doi.org/10.1016/j.snb.2015.02.122
  2. Barakat M.: Arab. J. Chem., 2011, 4, 361. https://doi.org/10.1016/j.arabjc.2010.07.019
  3. Fu F., Wang Q.: J. Environ.Manage., 2011, 92, 407. https://doi.org/10.1016/j.jenvman.2010.11.011
  4. Aminul Islam Md., Morton D., Johnson B.et al.: J.Water Process. Eng., 2018, 26, 264. https://doi.org/10.1016/j.jwpe.2018.10.018
  5. Lu F., Astruc D.: Coord. Chem. Rev.,2018, 365, 147. https://doi.org/10.1016/j.ccr.2017.11.003
  6. Singh N., Nagpal G., Agrawal S., Rachna: Environ. Technol. Innovat., 2018, 11, 187. https://doi.org/10.1016/j.eti.2018.05.006
  7. Babel S.: J. Hazard. Mater., 2003, 97, 219. https://doi.org/10.1016/s0304-3894(02)00263-7
  8. Yuan L., Liu Y.: Chem. Eng. J., 2013, 215, 432. https://doi.org/10.1016/j.cej.2012.11.016
  9. Hua M., Zhang S., Pan B.et al.: J. Hazard. Mater., 2012, 211, 317. https://doi.org/10.1016/j.jhazmat.2011.10.016
  10. Bhat A., Megeri G., Thomas C.et al.: J. Environ.Chem. Eng., 2015, 3, 30. https://doi.org/10.1016/j.jece.2014.11.014
  11. Sadeghalvad B., Karimi H., Hosseinzadegan H., Azadmehr A.: Desalin.Water Treat., 2014, 52, 6440. https://doi.org/10.1080/19443994.2013.823352
  12. Myers R., Montgomery D., Anderson-Cook C.: Response Surface Methodology: Process and Product Optimization using Designed Experiments, 4ndedn. John Wiley & Sons 2016.
  13. Murugesan A., Vidhyadevi T., Kalaivani S.et al.: J. Water Process. Eng., 2014, 3, 132. https://doi.org/10.1016/j.jwpe.2014.06.004
  14. Zhen H., Xu-Tao Z., Gui-Qing X.: Proceed. Int. Conf. on Technology Innovation and Industrial Management, 2013, 120.
  15. Ahmad R., Hasan I.: Environ.Nanotechn., Monitor. Manage., 2016, 6, 116. https://doi.org/10.1016/j.enmm.2016.09.002
  16. Kaynar Ü., Şabikoğlu I., Kaynar S.,Eral M.: Appl. Radiat. Isot., 2016, 115, 280. https://doi.org/10.1016/j.apradiso.2016.06.033
  17. Savasari M., Emadi M., Bahmanyar M., Biparva P.: J. Ind. Eng. Chem., 2015, 21, 1403. https://doi.org/10.1016/j.jiec.2014.06.014
  18. Hamane D., Arous O., Kaouah F.et al.: J. Environ.Chem. Eng., 2015, 3, 60. https://doi.org/10.1016/j.jece.2014.11.003
  19. Kalantari K., Ahmad M., Masoumi H.et al.: Int. J. Mol. Sci., 2014, 15, 12913. https://doi.org/10.3390/ijms150712913
  20. Zamani S., Salahi E., Mobasherpour I.: Res.Chem.Intermed., 2014, 40, 1753. https://doi.org/10.1007/s11164-013-1078-3
  21. Toor M., Jin B., Dai S., Vimonses V.: Ind. Eng. Chem. Res., 2015, 21, 653. https://doi.org/10.1016/j.jiec.2014.03.033
  22. Ranđelović M., Purenović M., Zarubica A.et al.: J. Hazard. Mater., 2012, 199, 367. https://doi.org/10.1016/j.jhazmat.2011.11.025
  23. Can N., Ömür B., Altındal A.: Sensor. Actuat. B-Chem., 2016, 237, 953. https://doi.org/10.1016/j.snb.2016.07.026
  24. Mobasherpour I., Salahi E., Ebrahimi M.: Res. Chem. Intermed., 2012, 38, 2205. https://doi.org/10.1007/s11164-012-0537-6
  25. Mobasherpour I., Salahi E., Pazouki M.: Desalination, 2011, 266, 142. https://doi.org/10.1016/j.desal.2010.08.016
  26. Doğan M., Alkan M., Demirbaş Ö.et al.: Chem. Eng. J., 2006, 124, 89. https://doi.org/10.1016/j.cej.2006.08.016