Resistance of Polylactide Materials to Water Mediums of the Various Natures

2021;
: pp. 191 - 197
1
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

The influence of talc filler, its content, as well as an additional heat treatment and temperature on the regularities of polylactide materials water-absorption has been researched. Based on the obtained data, the water diffusion coefficient in polylactide materials and the activation energy of the diffusion process were determined. It was found that the process of water absorption by the filled and heat-treated materials based on polylactide proceeds slower and requires more activation energy of the process. Stability of the developed polylactide materials to acidic and alkaline media has been determined, in particular, it was found that the destruction of polylactide samples occurs faster in an alkaline medium than in an acidic one

  1. [1] Niaounakis M.: Biopolymers: Applications and Trends. William Andrew, Oxford 2015.
  2. [2] Thakur V., Thakur M., Pappu A.: Hybrid Polymer Composite Materials. Woodhead Publishing Ltd, Cambridge 2017.
  3. [3] Sin L-T.., Tueen B.-S.: Polylactic Acid, 2nd edn. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. William Andrew, Oxford 2019.
  4. [4] Murariu M., Dubois P.: Advan. Drug Deliv. Rev., 2016, 107, 17. https://doi.org/10.1016/j.addr.2016.04.003
  5. [5] Jiménez A., Peltzer M., Ruseckaite R.: Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. Royal Society of Chemistry, Cambridge 2014. https://doi.org/10.1039/9781782624806
  6. [6] Carrasco F., Pages P., Gamez-Perez J. et al.: Polym. Degrad. Stab., 2010, 95, 116. https://doi.org/10.1016/j.polymdegradstab.2009.11.045
  7. [7] Tokiwa Y, Calabia B.: Appl. Microbiol. Biotechnol., 2006, 72, 244. https://doi.org/10.1007/s00253-006-0488-1
  8. [8] Stloukal P., Kalendova A., Mattausch H. et al.: Polym. Test., 2015, 41, 124. https://doi.org/10.1016/j.polymertesting.2014.10.015
  9. [9] Xu L., Crawford K., Gorman C.: Macromolecules, 2011, 44, 4777. https://doi.org/10.1021/ma2000948
  10. [10] Levytskyi V., Маsyuk A., Bilyi L. et al.: Mater. Sci., 2020, 55, 555. https://doi.org/10.1007/s11003-020-00338-9
  11. [11] Di Lorentso M., Androsch R.: Industrial Applications of Poly(lactic acid). Springer, New York 2018. https://doi.org/10.1007/978-3-319-75459-8
  12. [12] Moravskyi V., Levytskyi V., Bratychak Jr. M. et al.: Chem. Chem. Technol., 2019, 14, 347. https://doi.org/10.23939/chcht13.03.347
  13. [13] Saha S. Tsuji H.: Polym. Degrad. Stab., 2006, 91, 1665. https://doi.org/10.1016/j.polymdegradstab.2005.12.009
  14. [14] Androsch R., Schick C., Di Lorenzo M.:. Adv. Polym. Sci., 2016, 279, 235. https://doi.org/10.1007/12_2016_13
  15. [15] Levytskyj V., Laruk Yu., Humenetsky T., Sikora J.: Chem. Chem. Technol., 2015, 9, 199. https://doi.org/10.23939/chcht09.02.199
  16. [16] Koenig J.: Spectroscopy of Polymers, 2nd edn. Elsevier Science. New York 1999. https://doi.org/10.1016/B978-044410031-3/50005-0
  17. [17] Levytskyj V., Kochubei V., Gancho A.: Chem. Chem. Technol., 2013, 7, 169. https://doi.org/10.23939/chcht07.02.169
  18. [18] Faghri A., Zhang Y.: Transport Phenomena in Multiphase Systems. Academic Press, Cambridge 2006. https://doi.org/10.1016/B978-0-12-370610-2.50007-6
  19. [19] Suberlyak O., Levitskij V., Skorokhoda V., Godij A.: Ukr. Khim. Zh., 1998, 5-6, 122.
  20. [20] Katruk D., Levytskyi V., Khromyak U. et al.: Int. J. Polym. Sci., 2019, 2019, 1. https://doi.org/10.1155/2019/2547384