Ultrasonic Cavitation in Wastewater Treatment from Azo Dye Methyl Orange

2021;
: pp. 284 - 290
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The work is devoted to the study of reagent treatment of methyl orange mono azo dye under the action of acoustic vibrations of the ultrasonic range. The positive effect of cavitation phenomena on the rate of mineralization of azo dye (13.4% increase) was compared with the reagent treatment of the solution without ultrasonic vibrations. On the basis of the analyzed information sources and experimental results, a schematic technological scheme of cavitation-reagent mineralization of methyl orange was developed, the main apparatus of which is a hydrodynamic jet cavitator (scaling for industry).

  1. Innocenzi V., Prisciandaro M., Centofanti M., Vegliò F.: J. Environ. Chem. Eng., 2019, 7, 103171. https://doi.org/10.1016/j.jece.2019.103171
  2. Li P., Song Y., Wang S. et al.: Ultrason. Sonochem., 2015, 22, 132. https://doi.org/10.1016/j.ultsonch.2014.05.025
  3. Robinson T., McMullan G., Marchant R., Nigam P.: Bioresour. Technol., 2001, 77, 247. https://doi.org/10.1016/S0960-8524(00)00080-8
  4. Yang S., Jin R., He Z., et al.: Chem. Eng. Trans., 2017, 59, 289. https://doi.org/10.3303/CET1759049
  5. Yang S., Jin R., He Z., et al.: Chem. Eng. Trans., 2017, 59, 1063. https://doi.org/10.3303/CET1759178
  6. Koval I., Kislenko V., Starchevskii V., Shevchuk L.: J. Water Chem. Technol., 2012, 34, 112. https://doi.org/10.1016/j.cej.2010.07.063
  7. Koval I., Starchevskyy V.: Chem. Chem. Technol., 2020, 14, 264. https://doi.org/10.23939/chcht14.02.264
  8. Batoyeva A., Sizykh M., Aseyev D., Khandarkhayeva M.: Voda: Khimiya i Ekologiya, 2011, 9, 27.
  9. Batoyeva A., Sizykh M., Aseyev D.: Vestnik IrGTU, 2010, 3, 77.
  10. Cai M., Su J., Zhu Y., et al.: Ultrason. Sonochem., 2016, 28, 302. https://doi.org/10.1016/j.ultsonch.2015.08.001
  11. Suresh Kumar M., Sonawane S., Bhanvase B., Bethi B.: J. Water Process. Eng., 2018, 23, 250. https://doi.org/10.1016/j.jwpe.2018.04.004
  12. Ma C., Zhang L., Wang J., Li S., Li Y.: Res. Chem. Intermed., 2015, 41, 6009. https://doi.org/10.1007/s11164-014-1717-3
  13. Fan J., Guo Y., Wang J., Fan M.: J. Hazard. Mater., 2009, 166, 904. https://doi.org/10.1016/j.jhazmat.2008.11.091
  14. Rahim Pouran S., Bayrami A., Abdul Aziz A. et al.: J. Mol. Liq., 2016, 222, 1076. https://doi.org/10.1016/j.molliq.2016.07.120
  15. Cui P., Chen Y., Chen G.: Ind. Eng. Chem. Res., 2011, 50, 3947. https://doi.org/10.1021/ie100832q
  16. Dai K., Chen H., Peng T., Ke D., Yi H.: Chemosphere, 2007, 69, 1361. https://doi.org/10.1016/j.chemosphere.2007.05.021
  17. Soboleva N., Nosonovich A., Goncharuk V.: Khimiya i Tekhnologiya Vody, 2007, 29, 125.
  18. Chun H., Yizhong W., Tang H.: Appl. Catal. B, 2001, 35, 95. https://doi.org/10.1016/S0926-3373(01)00236-3
  19. Yavorskiy V., Sukhatskiy Y., Znak Z., Mnykh R.: Chem. Chem. Technol., 2016, 10, 507. https://doi.org/10.23939/chcht10.04.507