Ohmic contacts to n-type and p-type gallium antimonide whiskers

2021;
: pp. 1-6
1
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

The ohmic contacts to the n-type conductivity gallium antimonide whiskers were created due to a current pulse shaper. It was established that I – V characteristics of GaSb whiskers at low temperatures are linear, regardless of the direction of current transmission. That allows using the investigated techniques to create electrical contacts and study their electrophysical characteristics. GaSb samples with a diameter of 12 μm and 20 μm were studied at temperatures 4.2 K and 77 K. A slide table with bath and microfurnace was made for welding ohmic contacts to GaSb whiskers. Gold microwire with a diameter of 30 μm was used as a contact material. The melting was carried out under the flux layer. It was revealed that the fusion is one of the most suitable methods for creating contacts to the whiskers grown by gas transport reactions.

  1. N. Rahimi, A. A. Aragon, O. S. Romero, D. M. Shima, T. J. Rotter, S. D. Mukherjee, G. Balakrishnan, and L. F. Lester, “Electrical and microstructure analysis of nickel-based low- resistance ohmic contacts to n-GaSb”, APL Materials, no. 1(6), pp. 062105, 2013.
     https://doi.org/10.1063/1.4842355
  2. A. A. Vasiliev, A. M. Mozharov, F. E. Komissarenko, G. E. Cirlin, D. A. Bouravlev, and I. S. Mukhin, “Researching the electrical properties of single A3B5 nanowires”. In Journal of Physics: Conference Series, vol. 917, no. 3, pp. 032-042, November 2017.
    https://doi.org/10.1088/1742-6596/917/3/032042
  3. K. Ikossi, M. Goldenberg, and J. Mittereder,  “Metallization options and annealing temperatures for low contact resistance ohmic contacts to n-type GaSb”, Solid-State Electronics, no. 46(10), pp. 1627-1631, 2002.
    https://doi.org/10.1016/S0038-1101(02)00116-8
  4. J. A. Robinson and S. E. Mohney, “An improved In-based ohmic contact to n- GaSb”,  Solid-State Electronics, no. 48(9), pp. 1667-1672, 2004.
    https://doi.org/10.1016/j.sse.2004.02.022
  5. K. A. Dick, “A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires Progress in Crystal”, Growth and Characterization of Materials, no. 54(3-4), pp. 138-173, 2008.
    https://doi.org/10.1016/j.pcrysgrow.2008.09.001
  6. A. Subekti, V. W. L. Chin, and T. L. Tansley, “Ohmic contacts to n-type and p-type GaSb”, Solid-State Electronics, no. 39(3), pp. 329-332. 1996.
    https://doi.org/10.1016/0038-1101(95)00144-1
  7. A. Piotrowska, E. Kaminska, T. Piotrowski, S. Kasjaniuk, M. Guziewicz, S. Gierlotka, X. W. Lin, Z. Liliental-Weber, J. Washburn, and S. Kwiatkowski, “Interaction of Au with GaSb and its Impact on the Formation of Ohmic Contacts”, Acta Physica Polonica-Series A General Physics, no. 87(2), pp. 419-422, 1995.
    https://doi.org/10.12693/APhysPolA.87.419
  8. C. H. Lee, G. H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces”, Nature nanotechnology, no. 9(9), pp. 676, 2014.
    https://doi.org/10.1038/nnano.2014.150
  9. D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p− n junctions”, Applied Physics Letters, no. 93(11), pp. 112106, 2008.
    https://doi.org/10.1063/1.2983744
  10. Y. Zhang, R. Suzuki, and Y. Iwasa, “Potential profile of stabilized field-induced lateral p–n junction in transition-metal dichalcogenides”, ACS nano, no. 11(12), pp. 12583-12590, 2017.
    https://doi.org/10.1021/acsnano.7b06752
  11. S. S. Gavryushin and P. A. Skvortsov, “Evaluation of output signal nonlinearity for semiconductor strain gage with ANSYS software”, In Solid State Phenomena”, Trans Tech Publications Ltd, Vol. 269, pp. 60-70, 2017.
    https://doi.org/10.4028/www.scientific.net/SSP.269.60
  12. K. F. Brennan and A. S. Brown, Theory of modern electronic semiconductor devices. New York, USA:  John Wiley, 2002.
    https://doi.org/10.1002/0471224618
  13. D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, and G. C. Verghese, “Modeling and simulation of power electronic converters”, Proceedings of the IEEE, no. 89(6), pp. 898-912. 2001.
    https://doi.org/10.1109/5.931486
  14. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko,  N. Liakh-Kaguy, and K. Rogacki, “Properties of doped GaSb whiskers at low temperatures”, Nanoscale research letters, no. 12(1), pp. 1-8, 2017.
    https://doi.org/10.1186/s11671-017-1923-1
  15. S. S. Warsaw, N. S. Liakh, and N. M. Stasiuk,. “Nonlinear effects in point contacts metal-silicon, metal-silicon-germanium”, Physics and Chemistry of Solid State, no. 2 (4), pp. 727-734, 2001.