Accelerometer sensing element based on nanostructured silicon

2013;
: pp. 11-16
1
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
2
Vasyl Stefanyk Precarpathian National University
3
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
4
Vasyl Stefanyk Precarpathian National University

In this work we consider sensing elements of an accelerometer which is made using the combined technologies of silicon-on-insulator (SOI) structures and silicon nanocrystals whiskers manufacturing. On their basis a quick-response, high sensitive to acceleration and displacement device with submicrometer and nanometer typological sizes has been designed. This enabled us to create, on its basis, both a discrete device and an element of integrated nanoelectromechanical element silicon-on-insulator structures, which provides control of displacement up to 200 nm.

  1.  J.Wilson, Sensor Technologу Handbook. Amsterdam, Netherlands: Elsevier, 2005.
  2.  Y.Cui and C.Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, vol. 291, 2001.
  3.  E.Sicard and S.Delmas, Advanced CMOS cell design. NewYork, USA: McGraw-Hill, 2007.
  4.  K. Bernstein and N. Rochler. SOI circuit design. USA, New York, USA: Kluwer Academic Press, 2002.
  5.  V.Popov, I.Antonova, A. Francuzov, L.Safonov, G.Feofanov, O. Naumova, and D. Kilanov, “Properties structures and devices of silicon-on-insulator”, Semiconductors, vol.35, 2001.
  6.  R.He and P.Yang, “Giant piezoresistance effect in silicon nanowires”, Nature nanotechnology, vol.1, 2006.
  7. O.Naumova, I.Antonova, V.Popov, Yu.Nastaushev, T.Gavrilova, I.Litvin, and A.Aseyev, “Modification of silicon-on-insulator structures under nano-scale Device fabrication”, Microelectronic Engineering, vol. 69, 2003.
  8.  V.Turchanikov, A.Nazarov, V.Lysenko, J.Carreras, and B.Garrido, “Charge storage peculiarities in poly-Si-SiO2-Si memory devices with Si nanocrystals rich SiO2”, Microelectronics Reliability, vol. 45, 2005.
  9.  O. Naumova, V. Popov, A. Aseyev, Yu. Ivanov, and A. Archakov, ”Silicon-on-insulator nanowire transistor for medical biosensors, in Proc. EuroSOI International conference, pp.69-70, Goteborg, Sweden, 2009.
  10.  C. Lee, T. Tseng, S. Li, and P. Lin, “Growth of zing oxide nanowires on silicon (100)”, Tamkang Journal of Sience and Engineering, vol. 6, 2003.
  11.  Y. Zhang, Y. Tang, N. Wang, D.Yu, C. Lee, I. Bello, and S. Lee, “Silicon nanowires prepared by laser ablation at high temperature”, Appl. Phys. Lett., vol. 72, 1998.
  12.  Y.Wu, R.Fan, and P.Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires”, Nano Letters, vol. 2, 2002.
  13.  C.Deng, W. Sigmon, G. Giust, and J.Wu, “Wybourne M.N. Novel scheme to fabricate SiGe nanowires using pulsed ultraviolet laser induced epitaxy”, J. Vac. Sci. Technol. vol.A 14(3), 1996.
  14.  I.Zubel and M.Kramkowska, “The effect of iso­propyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions”, Sensors & Actuatuators, vol. A93, 2001.
  15.  M.J.Hampden-Smith, “Chemical Vapour Depo­sition of Metals. Part 1. An Overview of CVD Processes”, Journal Chemical Vapour Deposition, vol.1, 1995.
  16. A.Druzhynin, I.Ostrovskyi, Yu.Khoverko, and S.Nichkalo, “Growth of Si wires array by CVD method”, in Proc. 2009 Spring Meeting, Book of Abstracts (E-MRS). Symposium: I Advanced Silicon materials research for electronic and photovoltaic applications, p.155, Strasbourg, France, 2009.
  17. A.Druzhynin, I.Ostrovskii, Yu.Khoverko, and S.Nichkalo, “Peculiarities of Si nanowires growth”, in Proc. Materials of International Meeting “Clusters and nanostructured materials” (CNM-2), p. 58, Uzhgorod, Ukraine, 2009.
  18. A.Druzhynin, I.Ostrovskyi, Yu.Khoverko, and S.Nichkalo, ”Growing of silicon nano- and microwires by CVD and their possible sensor applications”, Scientific and Technical. "Electronics and Communications", vol. 2-3, p. 56-60, 2009.
  19. A.Druzhynin, I.Ostrovskyi, Yu.Khoverko, and S.Nichkalo, “Growing of nanosized crystals of Si by gas-phase epitaxy”, Elektronika, pp. 11-16, vol.646, Lviv, Ukraine: Lviv Polytechnic National University, 2009. (Ukrainian)
  20. A.Druzhynin, I.Ostrovskyi, Yu.Khoverko, and S.Nichkalo, “Features of creation nanosized silicon crystals”, Physics and Chemistry of Solids, vol.10, no. 4, pp. 777-780, Ivano-Frankivsk, Ukraine: V. Stefanyk Precarpathian National University 2009.
  21. A.Druzhynin, I.Ostrovskyi, Yu.Khoverko, and S.Nichkalo, ”Receiving nanowires from Si and SiGe”, Nanosystemy, nanomaterialy ta nanotekhnolohiyi, vol. 9, pp. 925-931, Kyiv, Ukraine: Institute for Metal Physics, 2011.
  22. A. Druzhynin, I.Ostrovskyi, S. Nichkalo, and Yu. Khoverko, A method of producing arrays of silicon nanocrystals, Ukraine Patent № 63926, 2011. (Ukrainian)
  23. А Druzhynin, E.Lavitska, I.Maryamova, and Y.Khoverko, “Laser recrystallized SOI layers for sensor applications at cryogenic temperatures”. In F. Balestra et al., eds. Progress in SOI structures and Devices Operating at Extreme Conditions, pp. 233-237, Netherlands: Kluwer Acad. Publishers, 2002.
  24. A.Druzhynin, I.Maryamova, I.Kogut, and Yu.Khoverko, “Polysilicon on Insulator Structures for Sensor Application at Electron Irradiation & Magnetic Fields”, Advanced Materials Research, vol. 276, pp. 109–116, 2011.
  25. A.Druzhynin, I.Kogut, V.Golota, and Yu.Khoverko, Autoemission sensitive element of acselerometer, Ukraine Patent № 62951, 2011.