Estimation of the Earth crust strain rate tensor from GPS observations data in the Eastern Europe

2011;
: 5-16
Received: June 10, 2011
1
Department of Higher Geodesy and Astronomy, Lviv Polytechnic National University
2
Department of Higher Geodesy and Astronomy of Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Scientific Research Institute "Geodesy and Cartography"

Estimated from GPS observations velocities of GPS-stations were used to obtain 2D-model velocities and strain rate field in the Eastern Europe. The study of the velocities field in the region was done in a few steps. The first one consists of the development of the finite element approach on the geosphere based on bicubic spline functions and least squares collocation method for the interpolation scattered GPS-data to the regular nodes. The second one represents the inversion of velocities from GPS-observations to the strain rate tensor. In order to test this approach we chose to apply it to an Eastern Europe where such problem was not solved before. This region is not extensively instrumented as yet but it is well studied by a geological and geophysical data. Test is based on derived in the Research Institute of Geodesy and Cartography (Kyiv, Ukraine) solution of GPS-observations data processing for the region. Finally the full eigenvalue/eigenvector solution for deformations velocity tensor of concerned territory is preformed and analyzed.

  1. Vysotenko R.O. Vyznachennya shvydkostey zminy ko-ordynat postiyno diyuchykh stantsiy i periodychno diyuchykh punktiv UPM HNSS za rezul'tatamy suputnykovykh heodezychnykh sposterezhen' 1995–2007 rokiv // Suchasni dosyahnennya heodezychnoyi nauky ta vyrobnytstva. – L'viv. – 2010. – S. 37–42.
  2. Kochin N.E. Vektornoe ischislenie i nachala ten-zornogo ischisleniya. – M: Nauka, 1951. – 427 s.
  3. Marchenko O.M., Zayacz` O.S., Ny`chvy`d M.R. Pro dvo-vy`mirnu interpolyaciyu transformant gravita-cijnogo polya mody`fikovany`m splajnom Ermita // Visn. geodez. ta kartogr. – Kyyiv. – 2005. –  # 4, – S. 6–10. 
  4. Marchenko O.M., Tretyak K.R., Serant O.V. Ocinka tochnosti komponent tenzora deformaciyi // Su-chasni dosyagnennya geodezy`chnoyi nauky` ta vy`rob-ny`cztva. – L`viv. – 2010. – S. 41–43.
  5. Bird P. An updated digital model of plate boundaries // Geochemistry, Geophysics, Geosystems. – 2003. – Vol. 4, No 3, art. no. 1027, doi:10.1029/ 2001GC000252. – P. 1–52.
  6. DeMets C., Gordon R.G., Argus D.F., Stein S. Cur­rent plate motions // Geophysical Journal Inter­national. – 1990. – Vol. 101. – P. 425–478.
  7. DeMets C., Gordon R.G., Argus D.F., Stein S. Effect of recent revisions to the geomagnetic reversal times­cale on estimates of current plate motions // Geo­phys. Res. Lett. – 1994. – Vol. 21. – P. 2191–2194.
  8. El-Fiky G.S. Crustal strains in the Eastern Mediter­ranean and Middle East as derived from GPS ob­servations // Bull. Earthq. Res. Inst. Univ. – To­kyo. – 2000. – Vol. 75. – P. 105–125.
  9. El-Fiky G.S., Kato T. Continuous distribution of the horizontal strain in the Tohoku district, Japan, deduced from least squares prediction // Journal of Geodynamics. – 1999. – Vol. 27. – P. 213–236.
  10. El-Fiky G.S., Kato T., Fuji Y. Distribution of vertical crustal movement rates in the Tohoku district, Japan, predicted by least-squares collocation // Journal of Geodesy. – 1997. – Vol. 71. – P. 213–236.
  11. England Ph., Molnar P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults // Geophys. J. Int. – 1997. – 130. – P. 551–582.
  12. Haines A. J., Holt W. E. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data // J. Geophys. Res. – 1993. – Vol. 98. – P. 12057–12082.
  13. Heiskanen W.A., Moritz H. Physical Geodesy. – W.H. Freeman, San Francisco. – 1967. – 364 p.
  14. Julliette L., Altamimi Z., Olivier J. Interpolation of the European velocity field using least squeares collocation method // Paper presented at the EUREF Symposium 2006. Riga, Latvia, 14–17 June. – 2006.
  15. Krarup T.A Contribution to the Mathematical Foun­dation of Physical Geodesy // Danish Geod. Inst. Public. – Copenhagen. – 1969. – No 44.
  16. Kreemer C., Haines J., Holt W., E., Blewitt G., and Lavallee D. On the determination of a global strain rate model // Earth Planets Space. – 2000. – Vol. 52. – P. 765–770.
  17. Marchenko A.N. A note on the eigenvalue – eigen­vector problem – In: Kühtreiber N. (Ed.), Fest­schrift dedicated to Helmut Moritz on the occasion of his 70th birthday. Graz University of Tech­nology. – Graz. – 2003. – P. 143–154.
  18. McCarthy D., Petit G. IERS Conventions (2003), IERS Technical Note No.32, Verlag des Bundes­amts fur Kartographie und Geodasie, Frankfurt am Main. – 2004.
  19. Minster, J. B., Jordan T. H. Present-day plate motions // J. Geophys. Res. – 1978. – 83. – P. 5331–5354.
  20. Vaníček P., Grafarend E.W., Berber M. SHORT NOTE: Strain invariants. Journal of Geodesy. – 2008. – Vol. 82. – P. 263–268.