Construction of normal equations mission for processing data GOCE

: pp. 34-37
Received: June 02, 2013
Lviv Polytechnic National University

With the advent of satellite technology significantly increased amounts of measurement data. In this regard, there is a need in the selection algorithm to work with so many information.
In this article discusses an algorithm for constructing the matrix of normal equations by Satellite gradiometry (vertical gradient) to further define the harmonic coefficients of the gravitational field of the Earth. Formation matrix is using the method of partial sums of Gauss, the accumulation of elements of the normal equations.

1. Зазуляк П.М., Гавриш В.І. Євсєєва Е.М., Йосип¬чук М.Д, Основи математичного опрацюван¬ня геодезичних вимірювань // Львів: Растр-7, 2007. - 408 с.

2. Марченко О.М., Ярема Н.П., Лопушанський О.М., Лук'янченко Ю.О., Добові розв'язки гармо¬нічних коефіцієнтів 2-го порядку за даними градієнтометра місії GOCE // Геодинаміка. - 2011. - № 1(10). - С. 22-26.

3. Bock H., Jäggi A., Meyer U., Visser P., Van den Ijs¬sel J., Van Helleputte T., Heinze M., Hugentob¬ler U. GPS-derived orbits for the GOCE satellite // J Geod. - 2011. - № 85. - P. 807-818.

4. Bouman J., Fiorot S., Fuchs M., Gruber T., Schra¬ma E., Tscherning C., Veicherts M., Visser P. GOCE gravitational gradients along the orbit // J Geod. - 2011. - № 85. - P. 791-805

5 Eicker A. Gravity field refinement by radial basis fun¬ctions from in-situ satellite data // Institu für Geodäsie und Geoinformation der Universität Bonn, Januar 2008.

6. Golub G.H., Plemmons R.J. Large scale geodetic least squares adjustment by dissection and orthogonal decomposition // Department of Computer Sci¬ence School of Humanities and Sciences Stanford University, Stan-CS-79-774 November 1979.

7. Gruber Th., Rummel R., Abrikosov O., Van Hees R. GOCE High Level Processing Facility GOCE Le¬vel 2 Product Data Handbook // The European GOCE Gravity Consortium EGG-C - 2010. - 77 p.

8. Moritz H. Least-Squares Estimation in Physical Geo¬desy. - München, 1970.

9. Pail R. GOCE gravity models // Institute of Astrono¬mical and Physical Geodesy TU München.

10. Pail R., Plank G. Assessment of three numerical so¬lution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemen¬ted on a parallel platform // Journal of Geodesy. - 2002. - № 76. - P. 462-474.