Sounding of the Earth crust of the North-Western part of the Russian platform by the intrinsic microseisms

2013;
: pp. 102-109
https://doi.org/10.23939/jgd2013.01.102
Received: April 02, 2013
1
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences,
2
Institute of Ecological Problems of the North

Purpose. To investigate the structure of the upper crust of the Onega Peninsula by microseismic sensing. Methods. The technique involves a comprehensive analysis of detailed geological structures areas Onega Peninsula based on diagrams of the intensity distribution along the profile microseisms and depth, reflecting the relative velosity change properties of the medium obtained in the sample measurement acording the microseismic sounding method (MSM). Results. The results of sounding structure of the crust background micro-seismic two profiles within the Onega Peninsula. In the diagrams the relative intensity distribution within the profile microseisms-Känd Vorzogory revealed block structure cut alternation it fairly narrow vertical stripes, blocks, characterized by positive and negative values of the intensity microseisms, as well as a fairly high contrast between the blocks and within them. This is true for Mudyugskomu and Andozerskomu blocks Onega-raising Vazhsky depths of 3-5 km. Above they are limited to some subhorizontal "layer" of negative values of the relative intensity microseisms, gently immersed in a northerly direction, increasing in thickness to about 2-3 km. The variability of the intensity microseisms in the surface layer is different from that of the underlying layers. Blocks and stage Vazhsky Onega-raising can be exclusively at the surface and not have deep roots. The border between the Onega-raising and Onega Vazhsky graben more specific. According to cut the southern side of the graben Onega has not only the nature of the effluent, but rather gently inclined towards the graben and because of this can be traced to a depth of 7-8 km. The vertical arrangement of many of the isolated areas does not mean vertically the objects themselves, but can be explained by the resolution of the method, due to the peculiarities of manifestation of speed irregularities in the amplitude-frequency characteristic of Rayleigh waves. It may be noted a good correlation with the selected zones of anomalous geophysical data maps of the magnetic field. According to the diagram of relative intensity distribution along the profile Palovo- Samoded note a distinct boundary between Arkhangelsk and Onega projection graben, with distinct confinement of the crystalline basement of the projection of the Archangel to the surface and its penetration within the graben Onega, agree well with the geophysical data. It may be noted that the crystalline basement of the projection of the Archangel in the area is characterized by the introduction of its lifting lens at lower speeds, which may be due to the presence of heterogeneity (presumably fault) in the crystalline basement in the area. Originality. We get more detailed compared with the available geological and geophysical data on the structure information of the geological environment: Abuse graben within the Onega and the Onega-Vazhsky protrusion profile Känd Vorzogory and joint-Onega-Kandalaksha rift with the Arkhangelsk horst on the profile Samoded – Palovo. Practical significance. The convergence within the resolution of MSM findings with the known geological and geophysical data, which implies that more detailed information on the identified inhomogeneities within the Onega peninsula will be useful for seismological research, and in the search for minerals, especially diamonds, which is rich in the region.

1. Aleshin A.P. Vyalichkin V.I., Gorbatikov A.V., Stepanova M.Y., Komarov, V.B., Glubinnoe stroenie zemnoj kory v rajone Strel'covskogo uranovorudnogo polja (Vostochnoe Zabajkal'e) po dannym mikrosejsmiches-kogo zondirovanija [Deep crustal structure in the region Streltsovsky uranium ore field (Eastern Transbaikalia) according to microseismic sounding]. Vestnik ONZ RAN. [Bulletin of the Department of Earth Sciences], 2010, 2, pp. 1615-1618. NZ6004, DOI: 10.2205 / 2010NZ000022.
2. Glasko V.B. Obratnye zadachi matematicheskoj fiziki. [Inverse problems of mathematical physics]. M.: MGU im. Lomonosova. Moscow.: MSU. Lomonosov. 1984. 150 p.
3. Gorbatikov A.V. Pat. RF № 2271554. Bjul. izobr [Pat. RF № 2271554. Bul. Rec.], 2006, no. 7.
4. Gorbatikov A.V. Stepanov M.Yu., Korablyov G.E Zakonomernosti formirovanija mikrosejsmi-cheskogo polja pod vlijaniem lokal'nyh geologicheskih neodnorodnostej i zondirovanie s pomoshh'ju mikrosejsm [Regularities of formation of microseismic field under the influence of local geological irregularities and sensing using microseisms]. Fizika Zemli [Physics of the Earth], 2008, no. 7, pp. 66-84.
5. Gorbatikov A.V., Larin N.V., Moiseev E.I., Belyashov A.V. Primenenie metoda mikrosejsmicheskogo zondirovanija dlja izuchenija stroenija pogrebennoj trubki vzryva. [Application of the microseismic sounding method to study the structure of the buried pipe explosion] Dokl. AN. Reports of the Academy of Sciences. 2009, T. 428, no. 4, pp. 526-530.
https://doi.org/10.1134/S1028334X0907040X
6. Gorbatikov A.V., Tsukanov A.A. Modelirovanie voln Rjeleja vblizi rasseivajushhih skorostnyh neodnorodnostej. Issledovanie vozmozhnostej metoda mikrosejsmicheskogo zondirovanija [Modeling of Rayleigh scattering near the speed irregularities. Studying the possibility of the microseismic sounding method]. Fizika Zemli - Physics of the Earth. 2011.no.№ 4. pp 96-112.
7. Zoricheva A.I. Sever Russkoj platformy [North of the Russian Platform]. Geologija SSSR. T. 2. Arhangel'skaja, Vologodskaja oblasti i Komi. Geologicheskoe opisanie. Red. Salomatina Z.D., Vlasova I.S. M., Geology USSR. T. 2. Arkhangelsk, Vologda region and the Komi Republic. Geological description. Ed. Salomatina Z.D, Vlasov I.S. Moscow, 1963. 1077 p.
8. Kalitkin N.N. Chislennye metody. [Numerical methods], Moscow: Nauka, 1978, 530 p.
9. Konstantinovsky A.A. Onezhsko-Kandalakshskij rifejskij graben Vostochno-Evropejskoj platformy [Onega-Kandalaksha Riphean graben East European platform]. Geotektonika. Geotectonics. 1977. No. 3, pp. 38-45.
10. Koroleva T.Yu., Yanovsky T.B., Patrushev S.S. Ispol'zovanie sejsmicheskogo shuma dlja opre-delenija struktury verhnej tolshhi Zemli [The use of seismic noise to determine the structure of the upper strata of the Earth]. Fizika Zemli. Physics of the Earth. 2009.no. 5. pp. 1-12.
11. Kostyuchenko S.L., Zolotov E.E. Rakitov V.A. Glubinnoe stroenie i sejsmichnost' Karel'skogo regiona i ego obramlenija / Pod red. N.V. Sharova, Petrozavodsk: Karel'skij Nauchnyj Centr RAN [Lots of profiles "Quartz" and "Ruby". Deep structure and seismicity of the Karelian region and its surroundings. Ed. NV Sharov. Petrozavodsk: Karelian Research Centre], 2004, 353 p.
12. Otchet po regional'nomu izucheniju Nizhneonezhskoj i Lajskoj ploshhadej s cel'ju ocenki perspektiv almazonosnosti nizhnego techenija reki Onega v 2004-2008 gg. (Ob'ekt regional'nyj) [The report on the study of regional and Nizhneonezhskoy Layskoy areas to assess the prospects of diamond the lower reaches of the Onega River in 2004-2008. (Object regional)], Arkhangelsk, 2009, 583 с.
13. Rezul'taty regional'nyh geologo-geofizicheskih rabot v Mezenskoj sineklize v 2000-2004 gg. ZAO «Valdaj-geologija», FGU GNPP «Specgeofizika». Nauch. ruk. D.L. Fedorov. [The results of the regional geological and geophysical studies in Mezen syncline in 2000-2004. JSC "Valdaygeologiya" FSI SSPE "Spetsgeofizika." Sci. hands. D.L. Fedorov], Мoscow, 2004, 399 p.
14. Samarskii A.A. Vvedenie v chislennye metody. Uchebnoe posobie. M. Nauka, [Introduction to numerical methods. Textbook. M., Science], 1982. 269 с.
15. Sinitsyn A.V., Stankovskiy A.F., Danilov M.A. Kimberlitopodobnye jeruptivnye brekchii Nenoksy i perspektivy almazonosnosti severa Russkoj platform [Eruptive kimberlite breccia Nenoksa and prospects of diamond northern Russian platform], Sostojanie i perspektivy rasshirenija mineral'no-syr'evoj bazy Severo-Zapada RSFSR. L.: Nedra [Status and prospects of expanding the mineral resource base of the North-West of the RSFSR. L.: Nedra.], 1973, pp. 96-114.
16. Stankovskiy A.F., Danilov M.A., Grib V.P., Sinitsyn A.V. Trubki vzryva Onezhskogo poluostrova [Tube explo-sion of Onega Peninsula]. Sov. Geologija [Soviet geology.] 1973. No. 8. Pp. 69-79.
17. Stankovskiy A.F., Verichev E.M., Grib V.P., Dobeyko I.P. Vend jugo-vostochnogo Belomor'ja [Vend southeastern White Sea], Izvestija AN SSSR, [Izvestia the Academy of Sciences of the USSR], 1981, № 2, pp. 78-87.
18. Tektonicheskaja karta Belogo morja i prilegajushhih territorij, m-b1:1500000 [Tectonic Map of the White Sea and adjacent areas, the scale of 1:1500000], Glavnye redaktory M.G. Leonov, G.S. Kazanin, [Chief editors MG Leonov, GS Kazanin.], M.: OOO "IPP Kuna", [M.: Ltd. "IPP Kuhn"] 2010.
19. Frantsuzova V.I., Gorbatikov A.V., Danilov K.B. Struktura verhnej chasti osadochnogo chehla na profile g. Arhangel'ska [The structure of the upper part of the sedimentary cover on the profile of Arkhangelsk]. Geodinamika. Glubinnoe stroenie. Teplovoe pole Zemli. Interpretacija geofizicheskih polej. Materialy Pjatyh nauchnyh chtenij pamjati Ju.P. Bulashevicha. Ekaterinburg: IGf UrO RAN. [Geodynamics. Deep structure. The thermal field of the Earth. Interpretation of geophysical fields. Materials Fifth scientific readings memory YP Bulashevicha. Yekaterinburg: IGP UB RAS] 2009. Pp. 502-506.
20. Frantsuzova V.I., Makarov V.I., Danilov K.B., Gorbatikov A.V. Nizkochastotnoe prosvechivanie zemnoj kory Severa Russkoj plity s ispol'zovaniem fonovyh mikrosejsm [Low-frequency translucence of the crust of the North Russian plates with the background microseisms]. Problemy sejsmotektoniki. Mater. Vseross. konf. s mezhd. uchastiem. [Problems seismotectonics. Proceedings of the conference with international participation], M.: IFZ RAN [M.: IPE RAS], 2011, pp. 511-515.
21. Shapiro N. M., Campilio M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters, 2004, V. 31, LO7614.
https://doi.org/10.1029/2004GL019491
22. Shapiro N. M., Campilio M., Stehly L., Ritzwoller M.H. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 2005, V. 307, P. 1615-1618.
https://doi.org/10.1126/science.1108339