The peculiarities of high-magnesium clay minerals occurrence in phanerozoic evaporite formations

https://doi.org/10.23939/jgd2020.01.052
Received: March 03, 2020
1
Іnstitute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine
2
Іnstitute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine
3
Іnstitute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine

The aim of the study is to unravel the high-magnesium clay minerals occurrence in the Phanerozoic marine evaporite deposits and to find a correlation of magnesium clay minerals distribution with other cyclic processes in the Earth’s history, primarily, with changes in seawater chemistry during the Phanerozoic history of the Earth. The methodology consists of summarizing published data about clay minerals associations of the World’s Phanerozoic marine evaporite formations. Results. 74 literature sources (including our previous studies), covering 37 marine evaporite formations of the World, allowed tracing the temporal distribution of authigenic high-magnesium clay minerals in marine evaporite deposits. Sepiolite, palygorskite, corrensite, talc, serpentine, and talc-smectite were used to isolate the age intervals of the distribution of high-magnesium clay minerals. Among all the formations studied, these minerals were found in 24 which spread unevenly over time. Thus, 18 formations appear to be the Upper Proterozoic, Upper Carboniferous, Permian, Triassic, Upper Paleogene, and Neogene evaporites formed from SO4-rich seawater chemical type. And only 6 formations (Cambrian, Silurian, Devonian, Lower Carboniferous, and Jurassic) are represented by evaporites formed from Ca-rich seawater chemical type. The main factor for the formation of high-magnesium clay minerals in evaporite basins is the elevated magnesium content which is characteristic of SO4-rich seawater. The presence of pyroclastic material is the second significant factor for the appearance of high-magnesium clay minerals in evaporite deposits.  It must be an alkaline acidic basic composition for corrensite, and an alkaline composition for sepiolite and palygorskite. Scientific novelty. The distribution of high-magnesium clay minerals in Phanerozoic marine evaporite deposits is consistent with secular variations of seawater chemistry. Magnesium minerals are characteristic of the stages of its SO4-rich type which is known for high magnesium content. Simultaneous with sedimentation volcanic activity that supplied pyroclastic material into the evaporite basin, is the second necessary factor for the distribution of high-magnesium clay minerals. These geodynamic processes occurring in the hydrosphere and lithosphere caused evolutionary changes of the distribution of high-magnesium clay minerals of marine evaporite formations. Practical importance. Secular variations in the distribution of high-magnesium clay minerals of the World’s marine evaporites, consistent with changes in seawater chemistry and patterns of sedimentary rock formation as a whole, may be an additional indicator of age distribution and prediction of a complex of useful minerals, including potassium-magnesium salts of certain composition, mineral waters, hydrocarbons etc.

  1. 1. Beauford, D., Baronnet, A., Lanson, B., & Meunier, A. (1997). Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109-124.
    https://doi.org/10.2138/am-1997-1-213
    2. Becher A. (1965). Eine Tonmineralfolge vom Beckenrend zum Beckeninneren im Buntsandstein Nordost Bayerns. Beitr. Miner. und Petrogr., 11, 586-613.
    https://doi.org/10.1007/BF01110838
    3. Bilonizhka P. M., Vinar O. N., Mel'nikov V. S. O mineral'nom sostave glin soljanyh porod kalijnyh mestorozhdenij Prikarpat'ja [On mineral composition of clays of salt rocks of potash deposits of Forecarpatia]. Voprosy mineralogii osadochnyh obrazovanij [Issues of mineralogy of sedimentary formations]. L'vov : Izd-vo L'vov. un-ta, 1966. Kn. 7. S. 147-158 (in Russian).
    4. Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biul. PIG, 449, 137-146.
    5. Bodine M. W., Jr. (1985). Trioctahedral Clay Mineral Assemblages in Paleozoic Marine Evaporite Rocks. Sixth International Symposium on Salt, 1, 267-284.
    6. Bodine M. W., & Jr., Standaert R. R. (1977). Chlorite and illite compositions from Upper Silurian rock salt, Retsof, New York. Clays and Clay Miner., 25, 1, 57-71.
    https://doi.org/10.1346/CCMN.1977.0250109
    7. Bradley, W. F., & Weaver, C. E. (1956). A regularly interstratified chlorite-vermiculite clay mineral. American Mineralogist, 41, 497-504.
    8. Braitsch O. (1960). Mineralparagenesis and Petrologie der Stassfurtsalz in Reyerhaursen. Kali u. Steinsalz, 1, 1-14.
    9. Braitsch O. (1962). Entstehung und Stoffbestand der Salzlagerstatten. In: Mineralogie und Petrographie in Eizeldarstellungen. Berlin Heidelberg New York: Springer-Verlag, Bd. 3.
    https://doi.org/10.1007/978-3-642-49196-2
    10. Braitsch O. (1971). Salt Deposits, Their Origin and Composition. Berlin Heidelberg New York: Springer-Verlag.
    https://doi.org/10.1007/978-3-642-65083-3
    11. Dreizler I. (1962). Mineralogische untersuchungen in zwei Gipsvorkommen der Werraserie (Zechstein). Beitr. Min. Petr., 8, 323-338.
    https://doi.org/10.1007/BF01172881
    12. Dric V. A., Kossovskaja A. G. Glinistye mineraly: smektity, smeshanoslojnye obrazovanija [Clay minerals: smectites, mixed layer minerals]. Moskva: Nauka, 1990. 214 s. (in Russian).
    13. Echle, W. (1961). Mineralogische Untersuchungen an Sediment des Steinmergel-keupers und der Roten Wand aus der Umgeburg von Göttingen. Beitr. Miner. und Petrogr., 8, 28-59.
    https://doi.org/10.1007/BF01104959
    14. Fisher M. J., & Jeans C. V. (1982). Clay mineral stratigraphy in the permo-triassic red bed sequences of BNOC 72/10-1a, Western Approaches, and the south Devon Coast. Clay Minerals, 17, 79-89.
    https://doi.org/10.1180/claymin.1982.017.1.08
    15. Füchtbauer, H., & Goldschmidt, H. (1959). Die Tonminerale der Zechschteinformation. Beiträge zur Mineralogie und Petrographie, 6, 320-345.
    https://doi.org/10.1007/BF01150420
    16. Garrels R. M., Krajst Ch. L. Rastvory, mineraly, ravnovesija [Solutions, Minerals, Equilibrium] / Per. s angl. I. V. Vitovskoj. Pod red. I. D. Rjabchikova, V. V. Shherbiny. Moskva : Mir, 1968. 368 s. (in Russian).
    17. Grim R. E., Droste J. B., & Bradley W. F. (1960). A mixed layer clay mineral associated with an evaporite. Clay and clay minerals (8th nat. conf., 1959), 228-236.
    https://doi.org/10.1016/B978-0-08-009351-2.50025-8
    18. Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24, 279-283.
    https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
    19. Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta, 66, 373-375.
    https://doi.org/10.1016/S0016-7037(01)00884-5
    20. Iaremchuk I., Tariq M., Hryniv S., Vovnyuk S., & Meng F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic-Early Cambrian, Pakistan). Carbonates Evaporites, 32 (1), 63-74.
    https://doi.org/10.1007/s13146-016-0294-5
    21. Janshin A. L. Jevoljucija geologicheskih processov v istorii Zemli [Evolution of geological processes in the history of the Earth]. Leningrad : Nauka, 1988. 39 s. (in Russian).
    22. Jiang, W.-T., & Peacor, D. R., (1994). Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. Journal Metamorphic Geology, 12, 867-884.
    https://doi.org/10.1111/j.1525-1314.1994.tb00065.x
    23. Keeling P. S. (1956). Sepiolite at a locality in the Keuper marl of the Midlands. Min. mag., 31, 328-332.
    https://doi.org/10.1180/minmag.1956.031.235.08
    24. Kolosov A. S., Pustyl'nikov A. M., Moshkina I. A., Mel'nikova Z. M. Tal'k v kembrijskih soljah Kansko-Taseevskoj vpadiny [Talc in the Cambrian salts of the Kansko-Taseyev depression]. Dokl. AN SSSR [Doc. USSR Academy of Science]. 1969. T. 185. № 1. S. 174-178 (in Russian).
    25. Kossovskaja A. G., Sokolova T. N. Grauvakki krasnocvetnyh formacij Orenburgskogo Priural'ja. Grauvakki [Grauwakki of red-colored formations of the Orenburg Urals. Grauwackie]. 1972. S. 280-284. (Tr. GIN, vyp. 238) (in Russian).
    26. Kossovskaja A. G., Sokolova T. N., Dric V. A., Saharov B. A. Paragenezy i istorija formirovanija glinistyh mineralov v bassejnah nachal'noj stadii jevaporitovoj sedimentacii [Paragenesis and history of clay minerals formation in basins of the initial stage of evaporite sedimentation]. Problemy litologii i geohimii osadochnyh porod i rud [Problems of lithology and geochemistry of sedimentary rocks and ores]. Moskva, 1975. S. 279-296 (in Russian).
    27. Kovalevych, V. M., Peryt, T. M., & Petrychenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal Geology, 106, 695-712.
    https://doi.org/10.1086/516054
    28. Kubler B. (1973). La corrensite, indicateur possible de milieux de sedimentation et du degre de transformation d'un sediment. Bull. Centre Rech. Pau-SNPA, 7, 2, 543-556.
    29. Kühn R. (1951). Zur Kenntnis des Könenits. Neues Jahrb. Mineral., Monatsh., 1, 1-16.
    30. Langer-Kuźniarowa A. (1988). Clay minerals of the zechstein oldest rock salt of northern Poland. Tenth conference on clay mineralogy and petrology. Ostrava, 145-150.
    31. Lippman F., & Savascin M. (1969). Mineralogische Untersuchungen an Lösungsrückständen eines württembergischen Keupergipsvorkommens. Tschermak's Mineral. und Petrogr. Mitteilungen, 13, 165-190.
    https://doi.org/10.1007/BF01088021
    32. Lomova O. S. Palygorskity i sepiolity kak indikatory geologicheskih obstanovok [Palygorskites and sepiolites as indicators of geological conditions]. Moskva : Nauka, 1979. 180 s. (Tr. GIN, vyp. 336) (in Russian).
    33. Lowenstein, T. K., Hardie, L. A., Timofeeff, M. N., & Demicco, R. V. (2003). Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31, 857-860.
    https://doi.org/10.1130/G19728R.1
    34. Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine. No. 20. 499 p.
    35. Lucas, J., & Bronner A. M. (1961). Evolution des argiles sedimentaires dans le basin triasique du Jura francais. Bull. Serv. Carte Geol. Als. et Lorraine. 14(4), P. 137-149.
    https://doi.org/10.3406/sgeol.1961.1234
    36. Millo Zh. Geologija glin (vyvetrivanie, sedimentologija, geohimija) [Geology of clays (weathering, sedimentology, geochemistry)]. Per. s franc. M. E. Kaplana. Leningrad : Nedra, 1968. 359 s. (in Russian).
    37. Mossman, D. J., Delabio, R. N., & Mackintosh, D. (1982). Mineralogy of clay marker seams in some Saskatchewan potash mines. Canadian Journal of Earth Sciences, 19(11), 2126-2140.
    https://doi.org/10.1139/e82-187
    38. Murakami, T., Sato, T., & Inoue, A. (1999). HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. American Mineralogist, 84, 1080-1087.
    https://doi.org/10.2138/am-1999-7-810
    39. Olijovy'ch O., Yaremchuk Ya., Gry'niv S. Gly'ny' galogenny'x vidkladiv i kory' zvitryuvannya Kalush-Goly'ns'kogo rodovy'shha kalijny'x solej (miocen, Peredkarpattya) [Clays from evaporites and crust of weathering of the Kalush-Holyn' potash deposite (Miocene, Carpathian Foredeep)]. Mineral. zb. [Mineralogical collection]. 2004. # 54, vy'p. 2. S. 214-223 (in Ukrainian).
    40. Peterson, M. N. A. (1961). Expandable chloritic clay minerals from Upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee. Amer. Miner., 46, 1245-1269.
    41. Peterson, M. N. A. (1962). The mineralogy and petrology of Upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee. Journal Geology, 70(1). P. 1-31.
    https://doi.org/10.1086/626791
    42. Popov V. S., Osichkina R. G. Glinistye mineraly - indikatory uslovij formirovanija soljanyh tolshh (na primere galogennyh formacij Srednej Azii) [Clay minerals - indicators of conditions of formation of salt strata (on the example of evaporite formations of Central Asia)]. Himija i tehnologija mineral'nyh udobrenij [Chemistry and technology of mineral fertilizers]. Tashkent, 1971. S. 155-176 (in Russian).
    43. Pozo, M. & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8 (11), 520; https://doi.org/10.3390/min8110520
    https://doi.org/10.3390/min8110520
    44. Pundeer, G. S. (1969). Mineralogy, genesis and diagenesis of a brecciated shaly clay from the Zechstein evaporite series of Germany. Contribs Miner. und Petrol., 23, 65-85.
    https://doi.org/10.1007/BF00371333
    45. Pustyl'nikov A. M. Glinistye, hemo- i biohemogennye porody: Metodicheskaja razrabotka dlja prakticheskih zanjatij po kursu «Petrografija osadochnyh porod» [Clay, chemo- and biochemogenic rocks: Methodical development for practical training in the course "Petrography of sedimentary rocks"]. Novosibirsk : Novosibir. gos. un-t, 1992. 56 s. (in Russian).
    46. Rateev M. A. Autigennoe glinoobrazovanie pri vulkanogenno-osadochnom litogeneze [Autigenic clay formation during volcannic-sedimentary lithogenesis]. Osadkoobrazovanie i poleznye iskopaemye vulkanicheskih oblastej proshlogo [Sedimentation and minerals of volcanic regions of the past]. Moskva : Nauka, 1968, t. 1. (Tr. GIN, vyp. 195). S. 209-242 (in Russian).
    47. Rateev M. A. Mineralogija i genezis palygorskitov i sepiolitov v morskih otlozhenijah karbona Russkoj platformy [Mineralogy and genesis of palygorskites and sepiolites in marine deposits of carbon of the Russian platform]. Litologija i poleznye iskopaemye [Lithology and minerals]. 1963. № 1. S. 58-72 (in Russian).
    48. Rateev M. A. Zakonomernosti razmeshhenija i genezis glinistyh mineralov v sovremennyh i drevnih morskih bassejnah [Patterns of placement and genesis of clay minerals in modern and ancient marine basins]. Moskva : Nauka, 1964. 288 s. (Tr. GIN, vyp. 112) (in Russian).
    49. Rateev M. A., Osipova A. I. Glinistye mineraly v otlozhenijah aridnoj zony paleogena Fergany [Clay minerals in otlozheniyah arid zone of the Paleogene Fergany]. Dokl. AN SSSR [Doc. USSR Academy of Science]. 1958. T. 123. № 1. S. 166-169 (in Russian).
    50. Ronov A. B. Obshhie tendencii v jevoljucii sostava zemnoj kory, okeana i atmosfery [General trends in the evolution of the composition of the Earth 's crust, ocean and atmosphere]. Geohimija [Geochemistry]. 1964. № 8. S. 715-743 (in Russian).
    51. Schlenker, B. (1971). Petrographische Untersuchungen am Gipskeuper und Lettenkeuper fon Stutgart. Oberrhein. Geol. Abh., 20, H. ½, 69-102.
    52. Shexunova S. B. Osobly'vosti mineral'nogo skladu frakciyi menshe 1 μm vodnonerozchy'nnogo zaly'shku kam'yanoyi soli solenosny'x formacij Dniprovs'ko-Donecz'koyi zapady'ny'[Features of mineral composition of fraction less than 1 μm of water-insoluble residue of rock salt of evaporite formations of the Dnipro-Donets Depression]. Geol. zhurn. [Geological magazine]. 2010. # 1. S. 125-130 (in Ukrainian).
    53. Shexunova S., Yaremchuk Ya., Shevchenko O., Kochubej V. Osobly'vosti asociaciyi gly'ny'sty'x mineraliv solenosny'x formacij Dniprovs'ko-Donecz'koyi zapady'ny' [Features of clay minerals associations of evaporite formations of the Dnipro-Donets Depression]. Mineral. zb. [Mineralogical collection]. 2010. # 60, vy'p. 1. S. 92-122 (in Ukrainian).
    54. Shutov V. D. Mineral'nye paragenezy grauvakkovyh kompleksov [Mineral paragenesis of grauwac complexes]. 1975. S. 63-81 (Tr. GIN, Vyp. 278) (in Russian).
    55. Sokolova T. N. Autigennoe silikatnoe mineraloobrazovanie rannih stadij osolonennja [Autigenic silicate mineral formation of the early stages of evaporation]. Moskva : Nauka, 1982. 164 s. (Tr. GIN, vyp. 361) (in Russian).
    56. Stewart, F. H. (1965). The mineralogy of the British Permian evaporites. Miner. Mag., 34, 460-470.
    https://doi.org/10.1180/minmag.1965.034.268.40
    57. Warren, J. K. (2006). Evaporites : Sediments, Resources and Hydrocarbons. Berlin Heidelberg New York : Springer.
    https://doi.org/10.1007/3-540-32344-9
    58. Yaremchuk Ya. V. Gly'ny'sti mineraly' evapory'tiv fanerozoyu ta yixnya zalezhnist' vid stadiyi zgushhennya rozsoliv i ximichnogo ty'pu okeanichnoyi vody' [Clay minerals Phanerozoic evaporites and their dependence upon brine concentration and chemical type of seawater]. Suchasni problemy' litologiyi osadovy'x basejniv Ukrayiny' ta sumizhny'x tery'torij [Modern problems of a lithology of sedimentary basins of Ukraine and adjacent territories] : zb. nauk. pr. IGN NAN Ukrayiny'. 2010. Vy'p. 3. S. 138-146 (in Ukrainian).
    https://doi.org/10.30836/igs.2522-9753.2010.147301
    59. Yaremchuk Ya. V., Galamaj A. R. Mineral'ny'j sklad vodonerozchy'nnogo zaly'shku badens'koyi kam'yanoyi soli Ukrayins'kogo Peredkarpattya (dilyanka Gry'nivka) [Mineral composition of water-insoluble residue of Baden rock salt of Ukrainian Precarpathian (section Hrynivka)]. Geologiya i geoximiya goryuchy'x kopaly'n [Geology and geochemistry of fossil fuels]. - 2009. 1 (146). S. 79-90 (in Ukrainian).
    60. Yaremchuk Ya. V., Gry'niv S. P. Mineral'ny'j sklad gly'n kam'yanoyi soli miocenovy'x evapory'tiv Karpats'kogo regionu Ukrayiny'. [Mineral composition of clay rock salt of the Miocene evaporites of the Carpathian region of Ukraine] Suchasni problemy' litologiyi i minerageniyi osadovy'x basejniv Ukrayiny' ta sumizhny'x tery'torij [Modern problems of lithology and mineralogy of sedimentary basins of Ukraine and adjacent territories] : zb. nauk. pr. IGN Ukrayiny'. 2008. S. 209-215 (in Ukrainian). 
    https://doi.org/10.30836/igs.2522-9753.2010.147301