kinematic analysis

Design and operational peculiarities of four-degree-of-freedom double-legged robot with pneumatic drive and turning mechanism

Problem statement. Mobile robots are of significant interest among scientists and designers during the last several decades. One of the prospective drives of such robots is based on pneumatically operated walking (stepping) system with no use of electric, heat, magnetic or other types of energy. This allows the use of pneumatically-driven robots in the cases when the use of other energy sources is prohibited (e.g., in some gaseous or fluid mediums).

Structural and kinematic analysis of pantograph-type manipulator with three degrees of freedom

Problem statement. The processes of development and improvement of autonomous mobile robots are significantly constrained because of the lack of an open-access comprehensive scientific and theoretical framework for calculating and designing of autonomous mobile robotic systems Purpose. The main objective of the paper consists in carrying out kinematic analysis and motion simulation of pantograph-type manipulator with three degrees of freedom. Methodology.

Structural and Kinematic Synthesis of the 1-DOF Eight-Bar Walking Mechanism with Revolute Kinematic Pairs

Problem statement. The use of existing and the most widespread drives (wheeled and caterpillar one) is sometimes limited by complicated operational conditions while moving on rough terrain. The mentioned drives require a relatively flat surface to be operated effectively. A rocky or a hilly terrain imposes the demand of the use of alternative types of drives, in particular, walking ones.

Structure and Kinematic Synthesis of Crank-and-slider Walking Mechanism in Order to Ensure the Prescribed Path of Supporting Foot Motion

The prospects of usage of walking drives in mobile robotic systems are overviewed. The structure of crank-and-slider mechanism was synthesized on order to ensure the prescribed motion path of the supporting foot. The problems of kinematics of crank-and-slider mechanism are considered and the equations of the supporting foot motion are deduced. The geometrical parameters of the walking mechanism are determined taking into account the advanced values of step length and foot raising hight.