positioning accuracy

Verification of Computer Simulink-Model for Electromechanical System of Armament Complex Guidance of Combat Vehicle

The improvement of existing electromechanical guidance systems of the armament complex of combat vehicles should be implemented in the direction of increasing the speed and accuracy of positioning. The paper deals with the lifting mechanism of guidance of the package of guides of the multiple rocket launcher BM-21, which is a unit of the armament of the Armed Forces of Ukraine and is typical for many samples of weaponry.

Ways of the Bm-21 Fighting Vehicle Arming Electromechanical Aiming Control System Improvements on the Basis of Fuzzy Logic

Multiple rocket launchers are vital components in providing fire potential of combat units. Their mobility and target hitting accuracy determinatively impact the combat result. Existing guidance system of array of guides of a combat machine BM-21 is a complicated, inertial system with multiple feedbacks, characterized by back-lashes, gaps, and by limited elasticity of some elements of a mechanical part. It has to ensure required static and dynamic indices (i.e., speed of operation and accuracy of positioning of array of guides).

Mathematical modelling and experimental determination of parameters of the guidance system of weaponry complex

The methodological approaches to the improvement of the control system of the vertical guidance mechanism of FM-21 multiple launch missile system to increasing its speed and positioning accuracy are confirmed. The use of the three-circuit positional structure of the control system of the guidance mechanism with a position control loop and a fuzzy corrector is justified. A mathematical model of the guiding package motion has been obtained and its reaction has been calculated.