Modelling GHG emissions in the mineral products industry in Poland: An uncertainty analysis

2015;
: pp. 16-26
https://doi.org/10.23939/mmc2015.01.016
Received: February 06, 2015

Math. Model. Comput. Vol. 2, No. 1, pp. 16-26 (2015)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University; Academy of Business in Dąbrowa Górnicza
3
Systems Research Institute of the Polish Academy of Sciences
4
Systems Research Institute of the Polish Academy of Sciences

An improvement of methods for the inventory of greenhouse gas (GHG) emissions is necessary to ensure effective control of commitments to emission reduction. In this article the mathematical models of greenhouse gas emission processes from cement, lime, and glass production at the level of individual plants in Poland have been analysed. Results of the spatial analysis are presented in the form of a geo-spatial database of emissions, and visualised as layers on digital maps. Uncertainty of the inventory results is calculated using the Monte Carlo approach.

  1. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K.Tanabe, eds., Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan, 5 volumes (2006), available online at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  2. Boychuk Kh., Bun R. Regional spatial cadastres of GHG emissions in Energy sector: Accounting for uncertainty. Climatic Change, 124, is. 3, 561-574 (2014).
  3. Bun A., Gusti M., Hamal Kh., Bun R. Analysis and minimization of uncertainty of results of multilevel greenhouse gases inventory. Intern. Conf. on Environmental Observations, Modeling and Information Systems “ENVIROMIS’2006”, Tomsk, Russia, 45 (2006).
  4. Bun R., Hamal Kh., Gusti M., Bun A. A spatial GHG inventory on regional level: Accounting for uncertainty. Climatic Change. Springer Netherlands, 103, is. 1, 227-244 (2010).
  5. Ometto J. P., Bun R., Jonas M., Nahorski Z., Gusti M. Uncertainties in greenhouse gases inventories – expanding our perspective. Climatic Change, 124, is. 3, 451-458 (2014).
  6. Bun R., Gusti M., Kujii L. et al. Spatial GHG inventory: Analysis of uncertainty sources. A case study for Ukraine. Water, Air, & Soil Pollution: Focus, Springer Netherlands, 7, is. 4-5, 483-494 (2007).
  7. Poland’s National Inventory report 2012. Greenhouse Gas Inventory for 1988-2010. National Centre for Emission Management at the Institute of Environmental Protection - National Research Institute, Warsaw (2012), available online at: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inve...
  8. Neuhoff K., Vanderborght B., Ancygier A., et al. The Cement Report: Carbon Control and Competitiveness Post 2020. Climate Strategies (2014), available online at: http://climatestrategies.org/ publication/carbon-control-and-competitiveness-post-2020-the-cement-report/
  9. Produkcja wyrobów przemysłowych w 2010 r. Glówny Urza˛d Statystyczny. Warszawa (2011), available online at: http://www.stat.gov.pl/gus/5840_792_PLK_HTML.htm
  10. Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide Manufacturing Industries. European Integrated Pollution Prevention and Control Bureau. European Commission’s Joint Research Centre (2010), available online at: http://eippcb.jrc.ec.europa.eu/reference/BREF/clm_bref_0510.pdf
  11. Charkovska N., Bun R., Nahorski Z., Horabik J. Mathematical modeling and spatial analysis of emission processes in Polish industry sector: cement, lime and glass production. Econtechmod, 1, is. 4, 17-22 (2012).
  12. Penman J., Kruger D., Galbally I., et al. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC (2001), available online at: http://www.ipcc-nggip.iges.or.jp/public/gp/english/