Prestress effect on the thermomechanical response and fatigue life prediction of viscoelastic plates

: pp. 112–124
Received: November 29, 2019
Accepted: March 09, 2020
Taras Shevchenko National University of Kyiv
Taras Shevchenko National University of Kyiv
Taras Shevchenko National University of Kyiv

A statement of the coupled thermomechanical problem on forced resonant vibrations and dissipative heating of hinged viscoelastic elastomeric rectangular plate is given with account of prestresses applied.  The statement is based on the standard Kirchhoff-Love hypotheses and concept of complex characteristics that are used to describe the viscoelastic material response to harmonic loading.  Both steady-state and transient thermal response is investigated.  Influence of the prestress is studied in details for both uniaxial and biaxial preliminary stresses applied.  Dissipative heating temperature histories are calculated for the variety of the prestress and loading parameters.  Temperature criterion is adopted to determine the critical state.  The data obtained are used for the plate fatigue life prediction and the prestress effect on the plate response.

  1. Steinberger R., Valadas Leitão T. I., Landstätter E., Pinter G., Billinger W., Lang R. W.  Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing.  Int. J. Fatigue. 28 (10), 1340–1347 (2006).
  2. Rittel D.  On the conversion of plastic work to heat during high strain rate deformation of glassy polymers.  Mech. Mater. 31 (2), 131–139 (1999).
  3. Moissa S., Landsberg G., Rittel D., Halary J. L.  Hysteretic thermal behavior of amorphous semi-aromatic polyamides.  Polymer. 45 (25), 11870–11875 (2005).
  4. Mortazavian S., Fatemi A.  Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review.  Int. J. Fatigue. 70, 297–321 (2015).
  5. Haward R. N.  Heating effects in the deformation of thermoplastics.  Thermochim. Acta. 247 (1), 87–109 (1994).
  6. Hashemi M., Zhuk Y.  The influence of strain amplitude, temperature and frequency on complex shear moduli of polymer materials under kinematic harmonic loading.  Mech. Mech. Eng. 21, 157–170 (2017).
  7. Mehdizadeh M., Khonsari M. M.  On the application of fracture fatigue entropy to variable frequency andloading amplitude.  Theor. Appl. Fract. Mech. 98, 30–37 (2018).
  8. Krairi A., Doghri I.  A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage.  Int. J. Plast. 60, 163–181 (2014).
  9. Katunin A., Fidali M.  Fatigue and thermal failure of polymeric composites subjected to cyclic loading.  Adv. Compos. Lett. 21 (3), 63–69 (2012).
  10. Mortazavian S., Fatemi A.  Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis.  Int. J. Fatigue.  102, 171–183 (2017).
  11. Katunin A.  Criticality of the Self-Heating Effect in Polymers and Polymer Matrix Composites during Fatigue, and Their Application in Non-Destructive Testing.  Polymers.  11 (1), 19 (2019).
  12. Senchenkov I. K., Zhuk Ya. A., Karnaukhov V. G.  Modeling the Thermomechanical Behavior of Physically Nonlinear Materials under Monoharmonic Loading.  Int. Appl. Mech. 40 (9), 943–969 (2004).
  13. Zhuk Ya. A., Senchenkov I. K.  On Linearization of the Stiffness Characteristics of Flexible Beams Made of Physically Nonlinear Materials.  Int. Appl. Mech.  42 (2), 196–202 (2006).
  14. Zhuk Y. A., Senchenkov I. K.  Monoharmonic approach to investigation of the vibrations and self-heating of thin-wall inelastic members.  Journal of Civil Engineering and Management. 15 (1), 67–75 (2009).
  15. Karnaukhov V. G., Kirichok I. F.  Forced Harmonic Vibrations and Dissipative Heating-up of Viscoelastic Thin-Walled Elements (Review).  Int. Appl. Mech. 36 (2), 174–195 (2000).
  16. Hashemi M., Zhuk Y. A.  The Influence of Temperature on the Cyclic Properties of the Transversely Isotropic Nanocomposite System Under Kinematic Harmonic Loading.  J. Mat. Sci. 236 (2), 185–198 (2019).
  17. Zhuk Y. A.  Damping characteristics of three-layer beam-damper under harmonic loading.  Math. Model. Comput. 1 (1), 109–119 (2014).
  18. Reddy J. N.  Theory and Analysis of Elastic Plates and Shell.  CRC Press (2006).
  19. Donnell L. H.  Beams, Plates and Shells.  McGraw-Hill (1976).
  20. Lazan B.  Damping of materials and members in structural mechanics.  Oxford etc., Pergamon Press (1968).
Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 112–124 (2020)