On properties of solutions for Fokker-Planck-Kolmogorov equations

2020;
: pp. 158–168
https://doi.org/10.23939/mmc2020.01.158
Received: March 17, 2020
Revised: April 20, 2020
Accepted: April 22, 2020

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 158–168 (2020)

Authors:
1
Lviv Polytechnic National University

In the paper, we illuminate the connection between diffusion processes and partial differential equations of parabolic type.  The emphasis is on degenerate parabolic equations with real-valued coefficients.  These equations are the generalization of the classical Kolmogorov equation of diffusion with inertia, which may be treated as Fokker-Planck-Kolmogorov equations for the corresponding degenerate diffusion processes.  A fundamental solution of the Cauchy problem for Fokker-Planck-Kolmogorov equation determines the transition probabilities to the corresponding diffusion process. The conditions on the coefficients under which there exists the classical fundamental solution are formulated.  The basic properties of  fundamental solutions are proved.  The application of the fundamental solution to the investigation of correct solvability for the Cauchy problem is presented.

  1. Eidelman S. D., Ivasyshen S. D., Kochubei A. N.  Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type.  Birkhauser Verlag, Basel-Boston-Berlin (2004).
  2. Kolmogoroff A. N.  Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung.  Mathematische Annalen.  104, 415–458 (1931).
  3. Einstein A.  Investigations on the Theory of the Brownian Movement. Dover, New-York (1956).
  4. Einstein A., von Smoluchowski M.  Brownsche Bewegung.  Verlag Harri Dentsch, Frankfurt am Main (1997).
  5. Uhlenbeck E. B., Ornstein L. S.  On the theory of Brownian motion.  Phys. Rev. 36, 823–841 (1930).
  6. Kolmogoroff A. N.  Zufällige Bewegungen (zur Theorie der Brownschen Bewegung).  Annals of Mathematics. Second Series. 35 (1), 116–117 (1934).
  7. Dynkin E. B.  Markov Processes I, II.  Springer, Berlin (1965).
  8. Doob I. L.  Stochastic Processes.  Wiley, New York (1953).
  9. Portenko N. I.  Generalized Diffusion Processes. Vol. 83.  Am. Math. Soc. (1990).
  10. Sonin I. M.  On a class of degenerate diffusion processes.  Theor. Probab. Appl. 12 (3), 49–496 (1967).
  11. Ivasyshen S. D., Medynsky I. P.  The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes.  Theory of Stochastic Processes. 16(32) (1), 37–66 (2010).
  12. Citti G., Pascucci A., Polidoro S.  On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance.  Differ. Integral Equat.  14 (6), 701–739 (2001).
  13. Pascucci A.,  Polidoro S.,  Lanconelli E.  Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance.  Nonlinear Problems in Mathematical Physics and Related Topics, vol. II. In Honor of Professor O. A. Ladyzhenskaya. International Mathematical Series, pp. 243–265 (2002).
  14. Pascucci A.  Kolmogorov Equations in Physics and in Finance.  In: Bandle C. et al. (eds) Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 353–364 (2005).
  15. Di Francyesco M., Pascucci A.  A cotinuous dependence result for ultraparabolic equations in option pricing.  J. Math. Anal. Appl. 336 (2), 1026–1041 (2007).
  16. Di Francyesco M., Pascucci A.  On a class of degenerate parabolic equations of Kolmogorov type.  Applied Mathematics Research eXpress.  2005 (3), 77–116 (2005).
  17. Foschi P., Pascucci A.  Kolmogorov equationsa arising in finance: direct and inverce problems.  Lect. Notes of Seminario Interdisciplinare di Matematica. Universita degli Studi della Basilicata.  VI,  145–156 (2007).
  18. Lanconelli E., Polidoro S.  On a class of hypoelliptic evolution operators.  Rend. Sem. Mat. Univ. Politec. Torino. Partial Diff. Eqs. 52 (1), 29–63 (1994).
  19. Polidoro S.  On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type.  Le Matematiche.  49 (1), 53–105 (1994).
  20. Bogachev N. U., Krylov N. V., Röckner M., Shaposhnikov S. V.  Fokker–Planck–Kolmogorov equations. Vol. 207.  Am. Math. Soc. (2015).
  21. Bogachev N. U.,  Röckner M., Shaposhnikov S. V.  On convergence to stationary distributions for solutions of nonlinear Fokker-Planck-Kolmogorov equations.  J. Math. Sci. 242 (1), 69–84 (2019).
  22. Ivasyshen S. D., Medynsky I. P.  On aplications of the Levi method in the theory of parabolic equations.  Matematychni Studii. 47 (1), 33–46 (2017).
  23. Ivasyshen S. D., Medynsky I. P.  The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations  with two groups spatial variables of degeneration.  I. Mat. Metody Fiz.-Mech. Polya. 60 (3), 9–31 (2017), (in Ukrainian).
  24. Ivasyshen S. D., Medynsky I. P.  The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations  with two groups spatial variables of degeneration.  II. Mat. Metody Fiz.-Mech. Polya. 60 (4), 7–24 (2017), (in Ukrainian).
  25. Ivasyshen S. D., Medyns’kyi I. P.  On the Classical Fundamental Solutions of the Cauchy Problem for Ultraparabolic Kolmogorov–Type Equations with Two Groups of Spatial Variables.  J. Math. Sci. 231, 507–526 (2018).