Integral conditions in the inverse problems of heat conduction

2020;
: pp. 219–227
https://doi.org/10.23939/mmc2020.02.219
Received: May 13, 2020
Accepted: June 16, 2020
1
Kremenchuk Mykhailo Ostrohradskyi National University
2
Kremenchuk Mykhailo Ostrohradskyi National University
3
Kremenchuk Mykhailo Ostrohradskyi National University

Thermal processes of new technological methods of heat treatment (thermocyclic, electropulse) of metals and alloys are considered in the paper.  Mathematical models of the temperature field in a moving tape and a wire with cyclically acting pulsed heat sources are considered.  Based on these models, the formulation of inverse problems for homogeneous and inhomogeneous thermal conductivity equations is proposed.  For each case (internal, external heat source or a combination), the appropriate method for solving the inverse problem is proposed.  The integral condition of heat balance is used to construct the solutions of the inverse problems.  An integral condition of energy balance is used to construct a quadratic residual functional in an extreme problem.  The inverse problem in the case when we have a combination of internal and external periodic heat sources is solved using the search method, where the integral condition was used to find the deviations and further refinements of the desired function of the source.

  1. Maeno T., Mori K., Nagai T.  Improvement in formability by control of temperature in hot stamping of ultra-high strength steel parts.  CIRP Ann. Manuf. Technol.  63 (1), 301–304 (2014).
  2. Spitsin V. I., Troitsky O. A.  Electroplastic Deformation of Metals.  Nauka, Moscow (1985), (in Russian).
  3. Holzweissig M. J., Lackmann J., Konrad S., Schaper M., Niendorf T.  Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications.  Metall. Mater. Trans. A.  46 (7), 3199–3207 (2015).
  4. Troitsky O. A., Stashenko V. I., Ryzhkov V. G., Lyashenko V. P., and Kobilskaya E. B.  Electroplastic wire drawing and new technologydevelopment light wire.  Problems of Atomic Science and Technology. 4, 111–117 (2011).
  5. Lyashenko V.,  Kobilskaya E.  Control of heat source in a heat conduction problem.  AIP Conference Proceedings. 1629 (1), 94–101 (2014).
  6. Lyashenko V., Hryhorova T.  Generalized mathematical model of thermal diffusion in powder metallurgy.  AIP Conference Proceedings.  1629 (1), 85–93 (2014).
  7. Lyashenko V., Hryhorova T.  Investigation of the temperature field of a two-layer cylinder with different thermophysical characteristics.  Visnyk of V. N. Karazin Kharkiv National University.  890, 47–52 (2010).
  8. Lykov A. V.  Theory of Heat Conductivity.  Vyshcha shkola, Moscow (1967), (in Russian).
  9. Alifanov O. M.  Inverse Problems of Heat Transfer.  Machinery, Moscow (1988), (in Russian).
  10. Samarsky A. A., Vabishchevich P. N.  Computational Heat Transfer.  Editorial URSS, Moscow (2003).
  11. Nikitenko N. I.  The theory of Heat and Mass Transfer.  Naukova Dumka, Kiev (1983), (in Russian).
  12. Chapko R.  On the numerical solution of the first initial boundary value problems for heat equation in the torus case.  Journal of Engineering Mathematics.  43, 75–87 (2002).
  13. Jonas P., Louis A. K.  Approximate Inverse for a one dimensional Inverse Heat Conduction Problem.  Inverse Problems.  16, 175–185 (2000).
  14. Wang P., Zheng K.  Reconstruction of spatial heat sources in heat conduction problems.  Applicable Analysis.  85 (5), 459–465 (2006).
Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 219–227 (2020)