Solving topology optimization problems using cellular automata and mortar finite element method

: pp. 239–247
Received: March 24, 2020
Revised: May 12, 2020
Accepted: May 15, 2020
Ivan Franko National University of Lviv
Cracow University of Technology

Currently topology optimization is widely used by engineers for different practical problems.  Researches by different authors offer algorithms of using cellular automata in these problems, and most recent publications introduce a mesh-refinement procedure to decrease numerical efforts.  In this article, we propose to apply a mortar finite element method for solving topology optimization problems using cellular automata.  This methodology enables us to handle the non-conforming meshes, which can arise in the refinement process.  We present a formulation of the algorithm and analyse its computational complexity by applying to a test problem.

  1. Rozvany G. I. N.  Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics.  Structural and Multidisciplinary Optimization. 21, 90–108 (2001).
  2. Bendsoe M. P., Sigmund O.  Topology Optimization: Theory, Methods and Applications.  Springer, Berlin (2003).
  3. Leng J.  6 – Optimization techniques for structural design of cold-formed steel structures.  Recent Trends in Cold-Formed Steel Construction. 129–151 (2016).
  4. Biyikli E., Albert C.  Proportional Topology Optimization: A new non-gradient method for solving stress constrained and minimum compliance problems and its implementation in MATLAB.  PLOS ONE. 10 (12), e0145041 (2015).
  5. Xie Y. M., Steven G. P.  Evolutionary Structural Optimization.  Springer (1997).
  6. Zhou M., Rozvany G. I. N.  On the validity of ESO type methods in topology optimization.  Structural and Multidisciplinary Optimization. 21, 80–83 (2001).
  7. Bendsoe M. P.  Optimal shape design as a material distribution problem.  Structural Optimization. 1, 193–202 (1989).
  8. Inou N., Shimotai N., Uesugi T.  Cellular automaton generating topological structures.  Proceedings of Second European Conference on Smart Structures and Materials. Vol. 2361, 47–50 (1994).
  9. Bochenek B., Tajs-Zielinska K.  GOTICA – generation of optimal topologies by irregular cellular automata.  Structural and Multidisciplinary Optimization. 55, 1989–2001 (2017).
  10. Tajs-Zielinska K., Bochenek B., Yashchuk Yu.  On implementation of adaptive cellular automata based on irregular grids to generation of structural topologies.  Proc. 2nd Int. Conf. Comp. Meth. in Mech. 80 (2019).
  11. Chopard B., Droz M.  Cellular Automata Modeling of Physical Systems.  Cambridge University Press (2005).
  12. Barber J. R.  Elasticity.  Kluwer Academic Publishers (2004).
  13. Zienkiewicz O. C., Taylor R. L., Zhu J. Z.  The Finite Element Method: Its Basis and Fundamentals.  Butterworth–Heinemann (2013).
  14. Wohlmuth B.  A Mortar Finite Element Method Using Dual Spaces For The Lagrange Multiplier.  SIAM Journal on Numerical Analysis. 38 (3), 989–1012 (2000).
  15. Dyyak I., Matysiak S., Yashchuk Yu.  FEM-BEM based error estimator in elasticity problems.  Proc. of the 19th Internat. Conf. on Comput. Meth. in Mech. Short Papers. 175–176 (2011).
Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 239–247 (2020)