OPTIMIZATION OF THE COMPOSITION OF MULTICOMPONENTBINDER

2018;
73-78
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The development of the technology of new binders and concrete involves the following stages: the selection and preparation of materials, designing the composition in accordance with requirements, preparation of the mixture and the formation of products, initial curing and setting, further hardening. All these stages are united in a single complex, in which each stage has its own special significance and simultaneously affects the efficiency of the entire technological complex.

Based on the literature analysis, we can state that to achieve greater efficiency of using the new generation of binding agents, it is necessary to use multicomponent complexes. This will allow to produce high-quality concrete of different purposes with the improved properties and different structures: coarse- or fine-grained, porous, fibrous. The basis of the new technology is the active management of technological redistribution through the use of chemical modifiers and active mineral components, optimization of compositions, mechanic-chemical activation and intensification of technological processes. The multicomponent composition of gypsum mixtures demands the study of their structurization via methods of mathematical modelling.

The article deals with the results of optimization of multicomponent composite binder based on gypsum-lime mixture. A mathematical model for stone strength was obtained in the form of a regression equation and the coefficients of this equation were analysed.

The analysis of mathematical dependencies and their graphical interpretation enabled us to determine the optimal amounts of amorphous silica and metakaolin in a binder, providing the highest stone strength at the age of 28 days.

The XRD showed that the basic crystalline phases of a composite stone at the age of 28 days are gypsum bihydrate, portlandite, calcite, ettringite and γ-Al2O3·2SiO2·2H2O (kaolinite).

The following construction characteristics of the stone were obtained: compressive strength – 9.50 MPa, average density – 1048 kg/m3, water resistance coefficient – 0.50, setting beginning – 19 min, setting end – 27 minutes, maximum temperature during hydration – 60 °C.

The optimal composition of the composite binder has been proposed: 54% G-5, 36% CaO, 5% amorphous silica, 5% metakaolin and 0.5% Na2B4O7·5H2O.

Composite stone is characterized by improved compressive strength (+35%) and water resistance (+20%) compared to a stone, the composition of which does not include amorphous silica and Na2B4O7·5H2O.

1. Логанина В. И. Оптимизация состава композитов общестроительного назначения,
модифицированных наноразмерными добавками/ В. И. Логанина, Л. В. Макарова, Р. В. Тарасов,
О. А. Давыдова // Региональная архитектура и строительство. – 2010. – № 2. – С. 53–57.
2. Коровяков В. Ф. Теоретические основы создания композиционных гипсовых вяжущих /
В. Ф. Коровяков // ALITinform. Цемент. Бетон. Сухие смеси. – 2009. – №6. – С. 92–101.
3. ШмаковаЮ. С. Структурообразование гипсовых композиций / Ю. С. Шмакова, О. В. Кононова //
13 Вавиловские чтения “Глобализация. Глобалистика. Потенциалы и перспективы России в
глобальном мире”: Матер. постоянно действующей Всероссийской междисциплинарной науч.
конф. с междунар. участием. – Йошкар-Ола, 2010. – Ч. 2. – С. 215–216. 4. BillongNdigui. Effect of
mixture constituents on properties of slaked lime–metakaolin–sand mortars containing sodium hydroxide /
NdiguiBillong, U. C. Melo, D. Njopwouo, F. Louvet, J. P. Bonnet // Cement & Concrete Composites. –
2009. – №31. – P. 658–662. 5. Morsy M. S. Development of eco-friendly binder using metakaolin–fly ash–
lime–anhydrous gypsum / M. S. Morsy, S. H. Alsayed, Y. A. Salloum // Construction and Building
Materials. – 2012. – No. 35. – P. 772–777. 6. Gameiro A. Hydration products of lime–metakaolin pastes at
ambient temperature with ageing / A. Gameiro, A. Santos Silva, R. Veiga, A. Velosa // Thermochimica
Acta. – 2012. – No. 535. – P. 36–41.7. Vimmrová A. Calcined gypsum–lime–metakaolin binders: Design of
optimal composition / A. Vimmrová, M. Keppert, O. Michalko, R. Černy // Cement & Concrete
Composites. – 2014. – No. 52. – P. 91–96. 8. Žemlička M. Study of hydration products in the model
systems metakaolin–lime and metakaolin–lime–gypsum / M. Žemlička, E. Kuzielová, M. Kuliffayová,
J. Tkacz, M. T. Palou // Ceramics – Silikáty. – 2014. – No. 59 (4). – P. 283–291. 9. Сафонова Т. Ю.
Структурообразование и твердение композиций с добавкой метакаолина / Т. Ю. Сафонова //
Достижения и перспективы естественных и технических наук: сб. матер. 1 Междунар. науч.-
практ. конф. – Ставрополь, 2012. – С. 3–8. 10. Чеканський Б. Б. Особливості структуроутворення
безклінкерних композиційних в’яжучих за високих водотвердих відношень / Б. Б. Чеканський,
І. В. Луцюк, Р. М. Яремчук // Вісник НУ ЛП “Хімія, технологія речовин та їх застосування”: зб.
наук. пр. – 2017. – № 868. – С. 106–111. 11. Якимечко Я. Б. Деякі закономірності використання
негашеного вапна у композиційних в’яжучих системах / Я. Б. Якимечко, П. В. Новосад // Технології
та дизайн. – 2014. – № 4 (13).Режим доступу: http://nbuv.gov.ua/UJRN/td_2014_4_8.