Mathematical Modeling of Transients Processes in Three-phase Transmission Line in Two-phase Short Circuit Mode

2020;
: pp. 9 - 17
Authors:
1
Lviv National Agrarian University Department of Electrical Systems

The article analyzes scientific publications, which showed that for most part of the study transients processes in the long power lines with distributed parameters is carried out by equivalent to the known equation of a long line with distributed parameters by a circular equivalent, or solve this equation using simplified approaches. These approaches require deterministic boundary conditions to the long line equation, which is not always possible when modeling transients processes in electrical networks. Also, in many works the authors do not take into account in the equations of the object linear active resistance, phase and interphase conductivities, calculating the usually mentioned processes by the known method of D’Alembert.

In the present work, the analysis of transients processes in a fragment of the electrical network is based on the modified Hamilton-Ostrogradsky principle, which made it possible to obtain the initial equations of state exclusively from a single energy approach, thus taking into account not only all energy transformations in the system, but also all distributed parameters of the long line. A mathematical model of a long power line is constructed, to which an equivalent asymmetric active- inductive load is connected, taking into account mutual inductive connections.

It is shown that the method of identification boundary conditions of the second and third genera to the differential equation of a long line increases efficiency construction of its model, since it does not require the creation of extended circuit substitution schemes, on the one hand; and makes it possible to take into account the course of electromagnetic processes at the field level, on the other hand. For further universal use of the developed line model, the parameter “output voltage” (voltage at the end of the line) is introduced into it.

Based on the developed mathematical model, algorithmization of dynamic processes and computer simulation of transient modes in the power line during a two-phase short circuit were performed. The research results are presented in the form of figures that are analyzed. All the results presented in this paper were obtained using numerical methods.

  1. https://e-cigre.org/article/cigre-reference-paper--the-need-for-enhanced... simulation-tools.
  2. Lobodzinsky, V. Yu., Chibelis, V. I. (2018). Matematychna modelʹ tryfaznoyi liniyi z rozpodilenymy parametramy pry elektromahnitnykh perekhidnykh protsesakh [Mathematical model of a three-phase line with distributed parameters in electromagnetic transients]. Bulletin of KNUTD. № 4, P. 96 – 102.
  3. Efficient   procedure   to   evaluate   electromagnetic   transients   on   three-phase   transmission   lines   /E. C. M. Costa,  S. Kurokawa, J. Pissolato, A. J. Prado / IET Generation Transmission & Distribution. – 2010. № 4(9).Р. 1069 – 1081.
  4. Model of Three-Phase Transmission Line with the Theory of Modal Decomposition Implied / R. Cleber da Silva, S. Kurokawa / Energy and Power Engineering. – 2013. № 5. Р. 1139–1146.
  5. Implementation of the Frequency Dependent Line Model (FD-Line) in a Real-Time Power System Simulator/ R. Iracheta-Cortez, N. Florez-Guzman, R. Hasimoto-Beltran / Ingenierнa e Investigaciуn. – 2017. № 37(3). Р. 61–71.
  6. MATLAB  based  Simulations  model  for  three  phases  Power  System  Network  /  C.  Vijaya  Tharani,M. Nandhini, R. Sundar, K. Nithiyanantha. – International Journal for Research in Applied Science & Engineering Technology. – 2016. Vol. 4. Issue XI. P. 502–509.
  7. Analysis of transient waveforms in a power system at asymmetrical short-circuits / P. Pruski, S. Paszek / Przeglad elektrotechniczny. – 2020. NR 2. S. 26–29.
  8. Wide D., Woodson G. (1964). Yelektromekhanicheskoye preobrazovaniye energii [Electromechanical energy conversion]. – Leningrad, 539 p. (rus).
  9. Chaban, A. (2015). Pryntsyp Hamiltona-Ostrohradskoho v elektromekhanichnykh systemakh [The principle of Hamilton-Ostrogradsky in electromechanical systems]. – Lviv, 488 p. (ukr).
  10. Levoniuk,  V.  R.  (2019).  Metody  ta  zasoby  analizu  komutatsiynykh  perekhidnykh  protsesiv  u  liniyakh elektroperedachi nadvysokoyi napruhy na osnovi variatsiynykh pidkhodiv [Methods and means of analysis of switching transients processes in ultra high voltage transmission lines on the basis of variational ap-proaches]. Ph.D. dissertation, Dept. of Electrical Sys-tems, Lviv Nat. Agrarian Univ. Lviv, Ukraine. 209 p.
  11. Mathematical model of electromagnetic processes in Lehera line at open-circuit operation / A. V. Chaban, V. R. Levoniuk,   I.   M. Drobot,   A.   F. Herman   /   Electrical   engineering   &   electromechanics.   –   2016,   No. 3, P. 30–35.
  12. Mathematical modelling of transient processes in power systems considering effect of high-voltage circuit breakers / A. Czaban, A. Szafraniec, V. Levoniuk / Przeglad Elektrotechniczny. – 2019. No 1. p. 49–52.