Geoinformation Technology For Cloudiness Analysis On The Territory Of Western Ukraine Using Satellite Images

2018;
: pp. 31 - 42
Authors: 
Petro Borodatyi, Rostyslav Bun

Department of Applied Mathematics, Lviv Polytechnic National University, S. Bandery Str., 12, Lviv, 79013, UKRAINE

Based on Earth observation data taken from satellites of the Landsat program and using the capabilities of the cloud platform Google Earth Engine the geoinformation technology of spatial analysis of cloudiness in the territory of Western Ukraine has been created. The distribution of cloudiness in the region is presented and the influence of the mountain range of the Carpathian Mountains on the main parameters of cloudiness is analyzed. The distribution of cloudiness densities in Lviv and Zakarpattya provinces is shown. The seasonal dynamics of cloudiness in the region during the year and the average cloudiness dynamics over 2013–2017 are analyzed. The comparative histograms of the distribution of areas with the same average cloudiness over the year in the Lviv and Zakarpattya provinces are presented.

  1. Armstrong S. A new methodology to optimise solar energy extraction under cloudy conditions / S. Armstrong, W. G. Hurley // Renewable Energy. – 2010. – Vol. 35, Is. 4. – P. 780–787.
  2. Clemesha R. Daily variability of California coastal low cloudiness: A balancing act between stability and subsidence / Rachel E. S. Clemesha, Alexander Gershunov, Sam F. Iacobellis, Daniel R. Cayan // Geophysical Research Letters. – 2017. – Vol. 44, Is. 7. – P. 3330–3338.
  3. Collow A. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics / Allison B. Marquardt Collow, Mark A. Miller, Lynne C. Trabachino // Journal of Geophysical Research. – 2016. – Vol. 121, Is. 13. – P. 7990-8005.
  4. Corine Land Cover data. [Електронний ресурс]. – Режим доступу: http://www. eea. europa. eu/ (17.09.2017).
  5. Dai A. Recent trends in cloudiness over the United States: A tale of monitoring inadequacies / Dai A., Karl Th. R., Sub B., Trenberth K. E. // Bulletin of the American Meteorological Society (BAMS). – 2006. – Vol. 87(5). – P. 597-606.
  6. Dong J. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine / Jinwei Dong, XiangmingXiao, Michael A. Menarguez et al. // Remote Sensing of Environment. – 2016. – Vol. 185. – P. 142–154.
  7. Eliseev A. V. Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity / Eliseev A. V., Coumou D., Chernokulsky A. V., Petoukhov V., Petri S. // Geoscientific Model Development. – 2013. – Vol. 6. – P. 1745-1765.
  8. Google Earth Engine: A planetary-scale platform for Earth science data & analysis. [Електронний ресурс]. – Режим доступу : https://earthengine. google. com (20.10.2017).
  9. Google Visualization API Reference: Google Charts. [Електронний ресурс]. – Режим доступу: https://developers.google. com/chart/ interactive/docs/reference (12.02.2017).
  10. Gorelick N. Google Earth Engine: Planetary-scale geospatial analysis for everyone / Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, Rebecca Moore // Remote Sensing of Environment. – 2017. – Vol. 202. – P. 18–27.
  11. Ioannidis E. On the intraannual variation of cloudiness over the Mediterranean region / E. Ioannidis, C. J. Lolis, C. D. Papadimas et al. // Atmospheric Research. – 2017. − Doi: 10.1016/j. atmosres.2017.08.021.
  12. Landsat Algorithms / Google Earth Engine API. [Електронний ресурс]. – Режим доступу : https://developers. google. com/earth-engine/landsat (12.08.2017).
  13. Landsat Mission. [Електронний ресурс]. – Режим доступу: https://landsat. usgs. gov/ (19.09.2017).
  14. Landsat Science. [Електронний ресурс]. – Режим доступу: https://landsat. gsfc. nasa. gov/ (13.09.2017).
  15. Landsat 8. [Електронний ресурс]. – Режим доступу: http://www. n2yo. com/satellite/? s=39084 (15.11.2017).
  16. What are the band designations for the Landsat satellites? / Landsat Missions. − [Електронний ресурс]. – Режим доступу : https://landsat. usgs. gov/what-are-band-designations-landsat-satellites (12.08.2017).
  17. Landsat 8 (L8) Data Users Handbook – Section 5 // USGS. [Електронний ресурс]. – Режим доступу: https://landsat. usgs. gov/landsat-8-l8-data-users-handbook-section-5 (12.02.2017).
  18. Nikitidou E. Short-term cloudiness forecasting for solar energy purposes in Greece, based on satellite-derived information / E. Nikitidou, A. Zagouras, V. Salamalikis, A. Kazantzidis // Meteorology and Atmospheric Physics. – 2017. – Doi: 10. 1007/s00703-017-0559-0.
  19. Patel N. N. Multitemporal settlement and population mapping from Landsat using Google Earth Engine / N. N. Patel, E. Angiuli, P. Gamba et al. // International Journal of Applied Earth Observation and Geoinformation. – 2015. – Vol. 35, Part B. – P. 199–208.
  20. Sakaeda N. The diurnal cycle of tropical cloudiness and rainfall associated with the Madden–Julian oscillation / Naoko Sakaeda, George Kiladis, Juliana Dias // Journal of Climate. – 2017. – Vol. 30, Is. 11. – P. 3999–4020.
  21. Singh H. N. Evaluation of cloudiness/haziness factor for composite climate / H. N. Singh, G. N. Tiwari // Energy. – 2005. – Vol. 30, Is. 9. – P. 1589–1601.
  22. Sumargo E. Variability of cloudiness over mountain terrain in the Western United States / Edwin Sumargo, Daniel Cayan // Journal of Hydrometeorology. – 2017. – Vol. 18, Is. 5. – P. 1227–1245.
  23. Xu K.-M. Evaluation of Statistically Based Cloudiness Parameterizations Used in Climate Models / Kuan-Man Xu, David A. Randall // Journal of the Atmospheric Science. – 1996. – Vol. 53, No. 21. – P. 3103–3119.