Purpose. Investigations of composition of gas within closed porosity (fluid inclusions and closed pores in rocks) of prospective gas-bearing Silurian graptolitic argillites of Lviv Paleozoic depression and ground of plausible mechanism and dynamics of gas generation during “shale” gas formation in productive strata of black-shale formations of the region. Methodology. The composition of volatile fluid inclusions and closed pores of rocks, and their relative gas saturation and water saturation were determined by mass spectrometric chemical method. Inclusions and closed pores were opened by crushing a standard sample (sample weight 200 mg, +1-2 rocks, and their relative gas saturation and water saturation were determined by mass spectrometric chemical analysis. The presence of volatile compounds in closed porosity (fluid inclusions and closed pores of host rocks (graptolitic argillites)) for the total gas-bearing potential of shale-bearing strata is estimated, which will be significant, regardless of other aspects of the problem (especially social and environmental issues), for the eventual estimate of shale gas resources (reserves).

Keywords: volatile; fluid inclusions; closed pores; “shale” gas; graptolitic argillites; Silurian; Lviv Paleozoic depression.
What differs in this study from the existing literature data on the content and composition of the gas in shale gas- prospective strata [Stavys'kyi, Holub, 2011; Hubych et al., 2012; Zagnitko, Mykhailov, 2014; Mykhailov et al., 2014], is the use of techniques of thermobarogeochemistry-mineral-fluidology [Kalyuzhnyi, 1982], in particular, the method of mass-spectrometric chemical analysis of volatile components of closed porosity (fluid inclusions and closed pores in rocks) of gas-bearing prospective sections. A characteristic feature in this technique is the release of volatile from fluid inclusions and closed pores by mechanically grinding rock samples which resembles the conditions of rock crushing in the area of artificial hydraulic fracturing (fracking).

We studied rocks of Lishchyna (parametric well 1-Lishchynska) and West Bachuch (parametric well 3-Bachuch) structures of Lviv Palaeozoic depression, primarily because of the prospects of the Silurian strata being rich in shale gas, as well as the likelihood of discovering of new gas fields in the Devonian sediments and new complex gas-coal deposits in the Carbon sediments [Lyzun et al., 2001] due to vertical migration inflow of methane from underlying rock complexes [Zinchuk et al., 2003; Naumko, 2006; Pavlyuk et al., 2008].

Purpose

Investigation of gas composition within closed porosity (fluid inclusions in minerals and closed pores in graptolitic argillites of prospective gas-bearing Silurian sediments of the Lviv Palaeozoic depression and justification of the probable mechanism and dynamics of gas generation during shale gas formation in productive strata of black-shale formations was carried out in the region.

Methodology

The composition of volatile fluid inclusions and closed pores in graptolitic argillites, and their relative gas saturation (increase of pressure in the assumed system of a mass-spectrometer relative to its residual value of the order of 1·10^{-3} Pa grinding chamber (∆P), Pa) and water saturation (content of the steam (absorber – P2O5) in total volume of volatile (C_{2O3}, voL.%) were determined by mass- spectrometric chemical method using time-of-flight mass-spectrometer MCX-3 (1–200 atomic unit of mass).

Inclusions in minerals and closed pores in rocks were opened by crushing the standard sample (weight 200 mg, +1-2 mm fraction) in a small metal cylindrical mortar between two plane-parallel hard carbide alloy (pobedit) surfaces in high vacuum (approx. 1×10^{-3} Pa).

Area of study

Prospective ‘shale’ gas-bearing rock complexes [Poprava, 2009; Kurovets' et al., 2010; Loktyev et al., 2011] are considerably spread within the south-western margin of the East European platform, in particular in the Teyseyrey-Tornquist Zone (or the Transeuropean suture zone), including within Ukraine (Fig. 1). They are represented by deep-sea terrigenous sediments, mainly graptolitic argillites of Lower Palaeozoic [Einasto et al., 1980; Dryhant, 2000]. Across continuous sequence of Sylurian – Lower Devonian strata are characterised by almost sub-meridional directionality of clearly marked facial zones and significant increase of the thickness of stratons westward. It lies on top of Ordovician, Cambrian and Vendian surfaces were eroded during prolonged regression (caused by Takon orogeny phase).

Richness of these strata in organic matter allows us to consider them as gas-forming strata [Poprava, 2009].

A representative section of deep-sea terrigenous sediments of the Silurian in the Lviv Palaeozoic depression is provided by a parametric well 1-Lishchynska.

Results of study

Our research of Silurian graptolitic argillites, in particular, on the material of core from the parametric well 1-Lishchynska (Int. 2278–3537 m) [Kurovets' et al., 2010, 2012] showed.

These rocks are typical black massive argillites rich in organic matter (Fig. 2) and split by multiple subvertical, more rarely horizontal cracks healed predominantly with calcite (Fig. 3).

The results of petrophysical laboratory studies found that this argillite’s open porosity varies within 0.6–2.4 % and it is almost impermeable (less than 0.001 μm²·10⁻³). The content of carbonate material reaches 20 %. The lowest volume density (2.64–2.70 g/cm³) is characteristic for argillites with coalised organic substance and the highest (2.75–2.8 g/cm³) – for massive hydromica argillites with inclusions of the pyrite.

According to the thermal analysis of 21 samples it was found that the content of TOC (total organic carbon) ranged from 0.75 to 2.38 %.

Chemical analysis made it possible to establish that the content of silica is on average 50 % regardless of its depth.

The samples after crushing in a sieved well which, along with these data, show the prevalence of silica component over clay component, which will likely favour fracking phenomena.

According to [Dmitrievskiy et al., 2011] the main criteria of bituminous shale gas-bearing prospects should include the following:

– the amount of organic matter exceed one percent to generate industrial-grade gas accumulations;

– the degree of maturity of organic matter by vitrinite reflectance (VR) (R₀) should be recorded in values over one which favours mass generation of gas hydrocarbons – the main zone of gas production;

– the content of clay material shall not exceed 50 %, otherwise the layer will plastically deform and
will not be able to develop cracks gas migration ways.

Overall, deposits of Volyn-Podillya satisfy the above listed criteria of shale gas prospectiveness [Kurovets' et al., 2010; Loktyev et al., 2011; Kurovets' et al., 2012, Hubych et al., 2012; Kurovets' et al., 2014], which is consistent with data on the adjacent territory of Poland [Poprava, 2009]. Therefore, the primary task of the present stage of a study in the region is seen to establish the presence of hydrocarbons in a closed pore space of graptolite argillite (fluid inclusions in minerals and closed pores of rocks) which allows us to get valuable data about the gas-bearing prospects of the studied sections with regard to content and peculiarities of the spatial distribution of shale gas in them [Naumko et al., 2012].

![Diagram](image_url)

Fig. 1. Scheme of spreading and isopach map of the Silurian deposits [Kurovets' et al., 2012]:
1 – Eastern extend of the Silurian deposits; 2, 3 – Eastern extend of the Lower Devonian deposits; (2 – Tyver Superhorizon, 3 – Dniester Series); 4 – Western extend of the Silurian deposits; 5 – fault; 6 – Lviv Depression limits; 7 – boreholes and thickness; 8 – extend of the biohermic barriers (A – Bagovytysa, B – Konivka, C – Isakivtsi suite); TTZ – Teisseyre-Tornquist Zone
Fig. 2. Shows the typical appearance of Silurian black massive graptolitic argillites enriched with organic matter in core for the section of the parametric well 1-Lishchynska:
sample Lishch. 1-66, depth interval 3450–3454 m, core – 78 mm

As determined by mass-spectrometric chemical analysis, within volatile components of fluid inclusions in minerals and closed pores (cavities, cracks) in graptolitic argillites, which are linked to the “shale” gas as a discrete gas phase, the section of well 1-Lishchynska is dominated by methane (up to 100 vol.% in the depth interval 2750–2755, 2800–2804 and 2998–3003 m), but in deeper (intervals 3402–3406 and 3500–3504 m) methane content decreases (79.2 to 62.1 vol.%). The concentration of carbon dioxide increases (3.9 to 12.0 vol.% and nitrogen increases (11.5 to 25.9 vol.%). It is also important to note that ethane appears (5.4 vol.%) (Table. 1, Fig. 4).

Attention is drawn to the absence of the steam, which may indicate “dryness” of fluid systems present in argillite stratum.

The total mass concentration of components (12.440–61.600·10^-6 g/g sample) is very high. In order to determine it, a chopped analyzed sample was sieved through a 0.25 mm sieve and results were attributed to the sifted part of the sample. Since the vacuumation of graptolitic argillites samples was slower compared to other samples of rocks, and degassing in the vacuum continued after the analysis, the content of natural gas is probably higher.

Note that within the influence of artificial hydraulic fracturing, rock under powerful hydrodynamic impact can be broken down to even smaller particles. Since by disclosure of pores of smaller volume (reaching down to perhaps nanoscale [Kiriukov et al., 2009], at the level of minerals structure) the concentration of volatile components will increase, and the amount of gas that can be extracted from rocks will probably reach even higher values.

Low values of relative gas saturation in host graptolitic argillites (0.08–0.27 Pa) confirm the traditional idea that the source of the volatile compounds of “shale” gas (primarily hydrocarbon compounds) is organic matter, which conversion took place at low mainly, litostatic pressures.

Fig. 3. General view of the core with vertical (subvertical) (a, b) and horizontal (c) cracks in Silurian graptolitic argillites healed calcite with formation veinlet-impregnated mineralization for the section of the parametric well 1-Lishchynska:
 a – sample Lishch. 1-44, depth interval 2800–2804 m, core – 78 mm;
b – sample Lishch. 1-48, depth interval 2800–2804 m, core – 78 mm;
c – sample Lishch. 1-46, depth interval 2800–2804 m, core – 78 mm

This is consistent with known findings by E. B. Chekaliuk [Chekaliuk, 1990], which were reached on the basis of thermodynamic calculations of...
The overall balance of “shale” gas in the world, however, is convincing evidence of the influx of deep hydrocarbon fluids from diverse sources [Dmitrievskiy et al., 2011], in particular dualistic abiogenic-biogenic sources [Naumko, 2006, 2015].

In our case it is confirmed by: isotopic composition of carbon of calcite veinlet-impregnated mineralization (δ^{13}C=-3.88‰ (PDB), after etching with hydrochloric acid –8.34‰ [Zagnitko et al., 2011; Mykhailov et al., 2014]), essentially methane volatile substance composition (100 vol.%); by one order higher relative gas saturation (1.07 Pa) compared with holding argillite (0.07–0.27 Pa); the presence of water vapor within inclusions in calcite (see Table 1) which healed powerful systems of interconnected migrational subvertical and horizontal cracks in argillite strata (see Fig. 3).

Therefore, in fluid inclusions in minerals and closed pores (cavities, cracks) in graptolitic argillites we found relics of renewable, almost substantially hydrocarbon anhydrous (“dry”) fluids as a crucial prerequisite for the formation of deposits of “shale” gas.

Similarly numbers are as well characteristic for section of the parametric well 3-Buchach [Naumko et al., 2009] (see Table 2 and, Fig. 4). Note that the comparable data available in the literature, with regards both to Volyn-Podillya and other regions, mention a somewhat wider range of identified hydrocarbon compounds [Stavysts’kyi, Holub, 2011; Hubych et al., 2012; Zagitko, Mykhailov, 2014; Mykhailov et al., 2014], which can be explained by the use of other methodological approaches to extraction and analysis of volatile.

The plausible mechanism of the formation of “shale” gas

Based on the analysis obtained author data by means of chemical mass-spectrometry on composition of volatile compounds (see, Tables. 1, 2, and Fig. 4) and materials [Stavysts’kyi, Holub, 2011; Hubych et al., 2012; Zagitko, Mykhailov, 2014; Mykhailov et al., 2014] with an attraction of literary information on methane sorption-generation processes in coal [Kirikov et al., 2009; Khramov, Lyubchak, 2009] we substantiated plausible mechanism and dynamics of gas-generation and origin of “shale” gas.

Table 1

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Depth (interval) of the selection, m</th>
<th>Rock, mineral</th>
<th>Components*: Voluminous particle, %</th>
<th>Mass concentration, $n\times10^6$ g/g of sample</th>
<th>Relative gas saturation ΔP, Pa1</th>
<th>Water saturation C_{HDO}, vol.%2</th>
<th>Total mass concen., $n\times10^6$ g/g of sample1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lischch. 1-39</td>
<td>2750-2755</td>
<td>Argillite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>1.08</td>
<td>9.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lischch. 1-48</td>
<td>2800-2804</td>
<td>Argillite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>0.27</td>
<td>4.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lischch. 1-48</td>
<td>Ibid</td>
<td>Calcite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>0.27</td>
<td>4.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lischch. 1-56</td>
<td>2998-3003</td>
<td>Argillite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>0.27</td>
<td>4.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lischch. 1-61</td>
<td>3402-3406</td>
<td>Argillite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>0.27</td>
<td>4.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lischch. 1-69</td>
<td>3500-3504</td>
<td>Argillite</td>
<td>CO$_2$ 0.800</td>
<td>12.0</td>
<td>–</td>
<td>0.27</td>
<td>4.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N$_2$ 0.333</td>
<td>25.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH$_4$ 0.233</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C$_2$H$_6$ 0.493</td>
<td>11.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. analyst B. E. Sakhno (mass-spectrometer MCX-3A);
2. sample of the mineral (rock) weight of 200 mg fraction + 1-2 was crushed by squashing in a specially designed mortar, before the analysis, the assumed system of the mass-spectrometer was vacuumed to values of order 1×10^3 Pa;
3. relative gas saturation ΔP, Pa – the increase of pressure in the assumed system of the mass spectrometer (with respect to the residual pressure of order 1×10^3 Pa in it), which is created as a result of the release of volatile components (without taking into account the steam, sorbed on P$_2$O$_5$, placed in the assumed system) from inclusions and closed pores in the chopping of the sample and may be a comparative value for the same weight;
4. relative water saturation C_{HDO}, vol.% – percentage of the steam, that was absorbed on P$_2$O$_5$ placed in the assumed system, in the total volume of released volatile components;
5. to determine the mass concentration of the crushed and analyzed sample was sifted through a 0.25 mm sieve and the results were attributed to the sieved portion of the sample.
Table 2

Materials to the consolidated characteristic of complex reservoir-rocks for the section of the parametric well 3-Buchach in the Lviv Palaeozoic depression

Sample number	Depth (interval) of selection, m	Lithology	Age	Reservoir properties of rocks	Fluid inclusion in minerals and closed pores of rocks (according to chemical mass spectrometry°)
					Composition of volatile components, vol.%^
					CO₂
Buch. 3-25	1000–1006	Limestone debris argillicous	S	0.72 Impenetrable	2.70
Buch. 3-32	1028–1034	Limestone bioclastic with skeletal remains of trilobites	S	1.02 Impenetrable	2.70
Buch. 3-32	Ibid	Secretions of calcite from limestone			–
Buch. 3-36	1051–1055	Limestone bioclastic conglomerate similar	S	0.78 Impenetrable	2.71
Buch. 3-39	1080–1084	Limestone organogenic-debris	S	0.62 0.027 Impenetrable	2.71
Buch. 3-46	1151–1157	Limestone debris argillicous	S	0.58 Impenetrable	2.73
Buch. 3-71	1453–1457	Sandstone quartz fine-grained	C	1.46 0.00015 Impenetrable	2.66
Buch. 3-91	1731–1736	Sandstone quartz	C	6.55 0.0021 Impenetrable	2.52
Buch. 3-115	2101–2106	Arkose	PR₃	2.64 Impenetrable	2.71
Buch. 3-115a	Ibid	Arkose changed	PR₃	Impenetrable	59.2
Buch. 3-116	2159–2153	Bark of weathering of acid rocks	AR + PR	3.02 Impenetrable	2.63
Buch. 3-117	2208–2213	Granite hornblende	AR + PR	2.58 Impenetrable	2.64

Notes:
° analyst B. E. Sakhno (mass-spectrometer MCX-3A);
¹ sample of the mineral (rock) weight of 200 mg fraction + 1-2 was crushed by squashing in a specially designed mortar, before the analysis, the assumed system of the mass-spectrometer was vacuumed to values of order 1·10⁻⁶ Pa;
² relative gas saturation ΔP, Pa – the increase of pressure in the assumed system of the mass spectrometer (with respect to the residual pressure of order 1·10⁻⁶ Pa in it), which is created as a result of the release of volatile components (without taking into account the steam, sorbed on P₂O₅, placed in the assumed system) from incisions and closed pores in the chopping of the sample and may be a comparative value for the same weight;
³ relative water saturation C_δO₂, vol.% – percentage of the steam, that was absorbed on P₂O₅ placed in the assumed system, in the total volume of released volatile components;
⁴ probably the steam is present.
We proceed from the principle of unity of nature and ways of transformation of dispersed (in this case in the form of the kerogen in argillites) or concentrated (as in coal) as forms of organic matter [Geologicheskiy slovar', 2012], considering that studied graptolitic argillites and coal differ only in the amount of organic matter, scattered in the form of kerogen in argillite or concentrated in coal [Naumko et al., 2013].

According to scanning electron microscopy [Ki-riukov et al., 2009] it was found that sorption and generation of methane in coal occurs simultaneously in several stages (Fig. 5):

1) initial methane generation – isolation of CH₃ radicals from initial matrix of coal and its frame and formation of CH₄ molecules;

2) methane sorption – formation of an equilibrium system “sorbate (modified coal matrix and its frame – sorbent (methane molecules)”;

3) desorption – the destruction of the “sorbate-sorvent” system;

4) filtration of separated gas – its transfer through the porous surrounding environment.

Accordingly justified from the standpoint of classical molecular physics and the colloid chemistry mechanism [Khramov, Lyubchak, 2009] methane generation in the porous space of coal passes on the decomposition of macromolecular organic matter as a result of chain free-radical reactions of methyl radical in the pore space of lito-basis which is characterised by increasing volume and local manifestations of high degree of the rarefaction created by the combination of nano-, micro- and macrostructures in heterogeneous system gas-(finely grinded) coal (Fig. 6, 7).

Extrapolating data from studies of methane sorption and generation processes in micro- and nanostructures of coal [Kiriukov et al., 2009; Khramov, Lyubchak, 2009] on conversion of organic matter of prospective gas-bearing complexes and complementing them with our data we can suggest a plausible mechanism of gas generation in the pore space of rocks followed by occlusion of free state gas into fluid inclusions in minerals and closed pores, cavities and cracks, and in the same way absorbed by kerogen already strictly as “shale” gas.

At the beginning of the transformation of sedimentary strata under quiet geodynamic conditions within buried organic matter there happen slow restructuring changes and, consequently, chemical changes in the direction of carbonization during...
which both methane (CH₄) and free radicals, especially CH₃ (to formation of ethane (C₂H₆) and other hydrocarbons) are formed – in the process of diagenesis biogenic gas in the upper zone of gas-generation is formed.

Later at appropriate stages of katagenesis during rock thermodestruction under conditions of increased temperature and pressure, structural changes of organic matter intensify which favours increased gas generation and formation of thermobaric gas.

When the certain critical concentration of free radicals is reached, free-radical chain reactions [Zherebets'ka et al., 2011] are initiated. The condition for the creation of a critical concentration of free radicals is a sudden momentary unsettlement of the local dynamic equilibrium in the reservoir. This leads to appearance of newly-generated gas in pores, down to perhaps nanoscale-sized pores at the level of structure of minerals [Kiriukov et al., 2009].

![Diagram of methane migration](image)

Fig. 5. Means of migration of coal methane [Kiriukov et al., 2009]:

a – scheme of ratio migration methane in supramolecular aggregates and environment of standard coal; b – size and pore types, methods for assessing permeability and species migration of methane in fossil coal (A. T. Airuni and V. V. Kiriukov)
The favorable factors include:

1) natural factor – hydrodynamic shock (for example transformation of seismic shock into hydraulic shock as is meant by V. P. Linetskiy [Linetskiy, 1974] or manifestations of the tectonic-dynamic destabilization [Solovjov, 1996, 2011]) in the area of introduction of deep-seated high-temperature fluid and corresponding inflow of deep-seated gas, in particular gas of abiogenic-biogenic origin [Naumko, 2006, 2015];

2) artificially created factor – hydrodynamic shock in the area of artificial hydraulic shock during hydraulic fracturing stimulation – stimulated gas generation.

Note that under the conditions of influence of deep fluids catalytic properties of clay minerals (Fig. 8) [Kosachev et al., 2010] are extremely enhanced, as a result of intensifying gas generation processes that were manifested in earlier stages of forming sedimentary strata under intense diagenetic formation of methane, and the adsorption of organic compounds by the surface of rock-forming minerals, with the appearance of hydrophobic properties of pore space of rocks both on micro- and macro-level that promotes permanent inflow of natural gas [Lukin, 2011, 2012].

Fig. 6. The chemical scheme of a homolytic reaction for example methyl radical [Khramov, Lyubchak, 2009]

Fig. 7. Mechanisms of chemical reactions of a methyl radical in the pore space of the lithobasis [Khramov, Lyubchak, 2009]

Fig. 8. The scheme of structural transformation of clay minerals as a result of the partial removal of interlayer water molecules [Kosachev et al., 2010]
The fact that the genesis of the majority of gases saturated with organic matter strata is associated with both processes of transformation and coalification of organic matter and, mainly, with their influx from endogenous cells both of crust and mantle nature, is confirmed by other researchers (for example [Zagnitko, Mykhailov, 2014]).

The study of “shale” strata of Volyn-Podillya along the section of the well 1-Lishchynska by the methods of EPR- and IR-spectroscopy [Bezruchko et al., 2015], showed that organic matter of rocks has relatively low absorption properties and negligible methane generation potential. It is insufficient the amount of organic matter is believed [Loktyev et al., 2015], showed that organic matter of rocks has relatively low absorption properties and negligible methane generation potential. It is insufficient the amount of organic matter is believed [Loktyev et al., 2015] to be the root cause of the lack of conventional fields in the sediments of the lower Paleozoic and limited displays of natural gas during drilling in the Lviv Paleozoic depression. If one considers almost complete absence of positive results of exploration drilling [Orlov et al., 2013; Filipovich, Kudryashov, 2013] and ambiguity of “shale” gas reserve calculation [Mykhailov et al., 2014] within the Baltic, Podlaskie and Lublin basins, there is a negative factor of over-estimation of potential in the Baltic, Podlaskie and Lublin basins. Conclusive results support the view of “shale” gas in these regions could be limited.

Therefore, like the North American deposits [Lukin, 2010], during search and evaluation work within prospective areas in Volyn-Podillya attention should be paid to locations with a high content of organic matter, in which large tectonic disturbances [Krup's'kyi, 2001] reveal as a result of the possible tectonic-dynamic destabilization [Solov'ev, 1996, 2011] and associated with significant fracturing. It is healed by newly-formed calcite veinlet-impregnated mineralization as one of the indicators of the processes of fluid transport of substances and mechanisms of healing of fractures [Naumko, 2006]. Thus, it forms a prerequisite for the reconstruction of migrating processes, at high and even prevailing role of underlying fluid-dynamical processes in the inflow of hydrocarbon fluids from deep horizons (regardless of source), which fact has been repeatedly emphasized.

In summary, data on geochemical conditions for formation of “shale” gas [Zagnitko et al., 2011; Kurovets' et al., 2011, 2014; Hubych et al., 2012; Zagnitko, Mykhailov, 2014] in sunsurs of various regions of Ukraine (Dnipro-Donets basin, Boytsk structure, Volyn-Podillya area) are considered as prospective for “shale” gas, and indicate the following.

The main types of rocks containing “shale” gas are clay and silt shales rich in organic matter. Their main minerals are: montmorillonite, kaolinite, chlorite, hydro-mica, quartz, opal, carbonates; and more rarely ore minerals and bitumen.

Component composition of gases, localized in different forms in rocks, changes within a relatively broad range, and can be very different both in the same area and at different levels of geological section and in different structures. The main components of gases are methane (up to 90 % of content) and its homologues (up to 48%), CO₂ (up to 65 %), nitrogen (up to 42 %). Also present are H₂, CO, He, H₂S. Content and distribution of components and proportions between them in different samples is rather inconsistent.

Analysis of the available data shows that the composition of these gases is similar to the composition of gases form gas fields and by-product gas from coal mines, which also fluctuate within a wide range.

During the step pyrolysis of “shale” gas, different dynamics of the degasation is manifested: and as a rule, the largest total amount of gas (up to 80 %) is exuded in the range of 400–600 °C, which is especially characteristic of methane and its homologues.

The ratio between the occluded and carbonate (in particular siderite) components of CO₂ is difficult to determine, although derivatograms clearly record intensive processes of de-carbonisation above 500 °C.

The isotopic composition of carbon in the individual components of “shale” gas varies widely: δ¹³C from -15.7 to -32 ‰ for methane and its homologues and from -14.1 to -26.4 ‰ for CO₂ (PDB Standard). Sorbed gas (enriched with isotope ¹³C) and gas from inclusions differ significantly in isotopic composition. Sometimes there is an irregular distribution of isotopes in individual homologues.

As the carbon isotopic composition of organic matter and carbonates in “shale” strata indicate a somewhat unusual conditions of their formation, in particular, not excluding abiogenical sources of individual components of [Zagnitko, Mykhailov, 2014], therefore answers to genetic questions can be further to assist by isotopic and geochemical studies of carbonaceous components of “shale” gas – methane and its homologues, and carbon dioxide.

Thus, viewed together, factors and processes enumerated above that occur during the formation and transformation of gas-bearing shales, rich in organic matter, that simultaneously both originate and accumulatore “shale” gas [Hubych et al., 2012], of collectively conducive to passage of processes of gas generation and the formation of “shale” gas.

Originality

For the first time relics of renewable, almost substantially hydrocarbon anhydrous (“dry”) fluids in fluid inclusions and closed pores (cavities, cracks) of shale gas promising graptolitic argillites of the Paleozoic of the Volyn-Podillya were found. This indicates the presence geo-fluid-dynamic conditions, both for the generation of hydrocarbons in the conversion of organic matter, absorbed and occluded by the mineral and organic component of rocks at the stage of katagenesis, and the inflow of deep-seated hydrocarbon fluids, and thus confirms shale gas potential of mineral resources of the region.
The influence of volatile compounds of closed porosity (fluid inclusions and closed pores of host rocks (graptolitic argillites)) for the total gas-bearing potential of shale-bearing strata is estimated, which will be significant, regardless of other aspects of the problem in the eventual estimate of shale gas resources (reserves).

Conclusions

1. Predominance of methane (up to 100 vol.%) in the presence of minor content of ethane, carbon dioxide and nitrogen in fluid inclusions and porous space of rocks indicates the presence of conditions for hydrocarbon component generation in processes of conversion of organic matter within studied graptolitic argillites of the Paleozoic of Volyn-Podillya.

2. Lack of steam may indicate “dryness” of hydrocarbon-bearing systems present in argillite stratum, and low values of relative gas saturation – that the transformation of organic matter as a source of volatile, especially hydrocarbon compounds happened in the presence of low (mainly, litostatic) pressures.

3. However, by one order higher relative gas saturation of veinlet calcite which healed the multitude of subvertical and horizontal cracks in argillite stratum and appearance of the stream indicates a possible inflow of deep-seated migrating paleofluids via these crack systems (powerful systems of interconnected cracks).

4. A plausible mechanism of gas generation and origin of “shale” gas is substantiated, based on the principle of unity in nature and ways of transformation of dispersed and concentrated forms of organic matter, and considering that studied graptolitic argillites and coal differ only by the amount of organic matter, are dispersed in the form of kerogen in argillites or concentrated in coal.

5. The obtained results on composition of the volatile components of fluid inclusions in minerals and closed pores of rocks supplement data on gases of hydrocarbon-holding paleosystems, their migration and localization with the formation of deposits of “shale” as the basis for establishing the nature of evolving and migrating schemes and, therefore, peculiarities of fluid regime of processes of gas genesis within prospective deposits of the region.

Practical significance

References

Геодинаміка

Lyzun S. O., Ivantsiv O. Ye., Dudok I. V., Naumko I. M.

Naumko I. M., Kurovets’ I. M., Kurovets’ S. S., Sakhno B. E., Chepusenko P. S. Letki komponenty flyuyidnykh vkyuchenn’ u mineralakh i zakrytykh por porid perspektyvno slantsevohazonosnykh kom-

Flyuyidy postsedymen-towychennych prosesiv v osadovykh ta osadovo-vulkanohennych verstvakh pivdennio-kakhidnoyi okrayini Skhidnoveuropeys’koy platformy i pry-lezkhyho heostruktur (za vkyuchennymy u mineralakh) [Fluids of post-sedimentogenous processes within sedimentary and sedimentary-volcanogenous strata in South-Western margin of the East European platform and adjoining geostreams (by inclusions in minerals)]. Heolohiya i heokhimiya horyuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 2007, no 4, pp. 63–94 (in Ukrainian).

Solov'jov N. N. Tectonodinamicheskie faktory prinuditel'no go uglavodorodnogo massoobmena v podzemnoy hidrofere osadochnykh baseinov [Tectonic-dynamic factors of the compulsory hydrocarbon mass-exchange in the underground hydrosphere of sedimentary basins]. Degazatsiya Zemli i genezis neftegazovykh mestorozhdeniy (k 100-letiiu so dnia rozhdeniya akademika P. N. Kropotkina) [Degazation of the Earth and genesis of oil and gas fields (for the 100th anniversary since the birthday of academian P. N. Kropotkin)], Moscow: GEOS, 2011, pp. 344–350 (in Russian).

Stavyts'kyi E. A., Holub P. S. Rezultaty kompleksnykh doslidzhen' ta obgruntuvannya perspektyvnykh umov formuvannya "slantsevoho" hazu [Results of complex investigations and basis of prospective areas and landfills to the shale gas searching]. Mineral'ni resursy Ukrainy [Mineral resources of Ukraine], 2011, no. 2, pp. 4–12 (in Ukrainian).

аргіліти проблеми (катагенезу органічної трі основується вільному системами появи процесів вуглеводневих Львівського значення досліджень умовах розчавлювання включень обґрунтування Б 40

І. М. НАУМКО, І. М. КУРОВЕЦЬ, М. І. ЗУБИК, Н. В. БАЦЕВИЧ, Б. Є. САХНО, П. С. ЧЕПУСЕНКО

Інститут геології і геохімії горючих копалин НАН України, вул. Наукова, 3а, Львів, 79060, Україна, тел. +38(032)2636014, ел. пошта: naumko@ukr.net

ВУГЛЕВОДНЕВІ СПОЛУКИ ТА ВІРОГІДНІ МЕХАНІЗМИ ГАЗОГЕНАРЕЦІЇ У ПЕРСПЕКТИВНИХ НА “СЛАНЦЕВИЙ” ГАЗ ВІДКЛАДАХ СИЛУРУ ЛЬВІВСЬКОГО ПАЛЕОЗОЙСЬКОГО ПРОГINU

Мета. Дослідження складу газу закритої пористості (флюїдні включення у мінералах і закриті пори порід) перспективно газоносних гранулітових аргілітів силуру Львівського палеозойського прогину та обґрунтування вірогідного механізму і динаміки газогенерації під час формування “сланцевого” газу у продуктивних верствах чорносланцевих формацій регіону. Методика. Склад летких сполук флюїдних включень у мінералах і закритих пор порід, їхні відносні газонасиченість і водонасиченість визначали мас-спектрометричним хімічним методом. Включення і закриті пори розкривали за допомогою розчавлювання стандартної проби (наважка 200 мг, фракція +1–2 мм) у невеликій металевій циліндричній ступці між двома плоскопаралельними твердонесенними (побєдітівим) поверхнями в умовах високого вакууму (порядок 1-10³ Па). Результати. За даними геологофілологічних досліджень у газовій фазі флюїдних включень у мінералах і закритих пор гранулітових аргілітів силуру Львівського палеозойського прогину домінує метан (до 100 об. %) за незначних вмістів етану, діоксиду вуглецю, азоту. Відсутність пари води може свідчити про “сухість” вуглеводневмісних систем, а низькі значення відносної газонасиченості – про перетворення органічної речовини як джерела летких вуглеводневних сполук за невисоких (головно, літо-статичних) тисків. Це свідчить про реальність перебігу процесів газотворення під час трансформації органічної речовини аргілітових верств. На порядок вища відносна газонасиченість включень у кальциті, яким заліковані субвертикальні тріщини в аргілітах, і поява пари води вказує на ймовірний приплив глибинних мігрувальних флюїдів потужними тріщинними системами. Обґрунтовано вірогідний механізм і динаміку газогенерації з подальшим захопленням газу у вільним етану та сорбціою і окклюзію породами, інтенсифікований припливом глибинних флюїдів. Він основується на зіставленні даних про склад летких сполук флюїдних включень у мінералах і закритих пор перспективно газоносних аргілітів та сорбійно-генераційні процеси утворення метану у вуглілі, виходячи з принципової схожості природи перетворення розсіяної і концентрованої форм органічної речовини. Наукова новизна. Вперше у флюїдних включеннях у мінералах і закритих порах (кавернах, тріщинах) перспективних на “сланцевій” газ гранулітових аргілітів палеозою Волиня-Поділья встановлено релікти відновних, практично істотно водневодневих безводних (“сухих”) флюїдів. Це вказує на наявність геофлюїдодинамічних умов, як для генерації вуглеводневі процесах перетворення органічної речовини, сорбованих і окклюдованих мінеральною і органічною складовою порі на стадії катагенезу, так і припливу глибинних вуглевдовневих флюїдів, і, отже, підтверджує газонасичений потенціал над регіону. Практична значущість. Оцінено вплив летких сполук закритої пористості (флюїдні включення у мінералах і закриті пори вмісних порід (гранулітових аргілітів) на сумарну потенційну газонасичність сланцевмісних верств, що матиме значення (не заторкуючи інших аспектів проблеми) за можливого підхідну ресурсів (запасів) “сланцевого” газу.

Ключові слова: флюїдні компоненти; флюїдні включення; закриті пори; “сланцевий” газ; гранулітова аргіліті; силур; Львівський палеозойський прогин.
И. М. НАУМКО, И. М. КУРОВЕЦ, Н. И. ЗУБИК, Н. В. БАЦЕВИЧ, Б. Э. САХНО, П. С. ЧЕПУСЕНКО
Институт геологии и геохимии горючих ископаемых НАН Украины, ул. Науковня, 3а, Львов, 79060, Украина,
tел. +38(032)2636014, эл. почта: naumko@ukr.net

УГЛЕВОДОРОДНЫЕ СОЕДИНЕНИЯ И ВЕРОЯТНЫЙ МЕХАНИЗМ ГАЗОГЕНЕРАЦИИ В ПЕРСПЕКТИВНЫХ НА “СЛАНЦЕВЫЙ” ГАЗ
ОТЛОЖЕНИЯХ СИЛУРА ЛЬВОВСКОГО ПАЛЕОЗОЙСКОГО ПРОГИБА

Цель. Исследование состава газа закрытой пористости (флюидные включения в минералах и
закрытые поры пород) перспективно газоносных гранитолитовых аргиллитов силура Львовского палео-
зойского прогиба и обоснование вероятного механизма и динамики газогенерации при формировании
“сланцевого” газа в продуктивных толщах черносланцевых формаций региона. Методика. Состав
летучих соединений флюидных включений в минералах и закрытых пор пород, их относительные
газонасыщенность и водонасыщенность определяли масс-спектрометрическим химическим методом.
Включения и закрытые поры раскрывали путем раздавливания стандартной пробы (навеска 200 мг,
фракция +1-2 мм) в небольшой металлической цилиндрической ступке между двумя плоскопа-
рallelными твердосплавными (победитовыми) поверхностями в условиях высокого вакуума (порядка
1·10⁻⁵ Па). Результаты. По данным минералофлюидологических исследований в газовой фазе флюидных
включений в минералах и закрытых пор гранитолитовых аргиллитов силура Львовского палеозойского
прогиба доминирует метан (до 100 об. %) при незначительных содержаниях этапна, диоксида угля, азота.
Отсутствие паров воды может свидетельствовать о "сухости" углеводородосодержащих систем, а
низкие значения относительной газонасыщенности — о превращении органического вещества в качестве
источника летучих углеводородных соединений при невысоких (примущественно, литостатических)
давлениях. Это свидетельствует о реальности прохождения процессов газообразования при транс-
формации органического вещества аргиллитовых толщ. На порядок высшая относительная газона-
сыщенность включений в кальците, которым залечены субвертикальные трещины в аргиллитах, и
явление паров воды указывает на вероятный приток глубинных мигрирующих флюидов мощными
трещинными системами. Обоснован вероятный механизм и динамика газогенерации с дальнейшим
захватом газа в свободном состоянии и сорбцией и окклюзией породами, интенсифицированным
влиянием глубинных флюидов. Он базируется на сопоставлении данных о составе летучих соединений
флюидных включений в минералах и закрытых пор перспективно газоносных аргиллитов и сорбционно-
генерационных процессах образования метана в углях, исходя из принципиального единства природы
реобразования рассеянной и концентрированной форм органического вещества. Научная новизна.
Впервые во флюидных включениях в минералах и закрытых порах (кавернах, трещинах) перспективных
на “сланцевый” газ гранитолитовых аргиллитов палеозоя Волино-Подолии выявлены реликты восста-
новленных, практически существенно углеводородных безводных (“сухих”) флюидов. Это указывает на
наличие геофлюидодинамических условий, как для генерации углеводородов в процессах превращения
органического вещества, сорбированных и окклюдиованных минеральной и органической составля-
ющими пород на стадии катагенеза, так и притока глубинных углеводородных флюидов, и, таким
образом, подтверждает газосланцевый потенциал недр региона. Практическое значение. Оценено
влияние летучих соединений закрытой пористости (флюидные включения в минералах и закрытые поры
вмещающих пород (гранитолитовых аргиллитов) на суммарную потенциальную газоносность сланце-
вовмещающих толщ, что будет иметь значение (не затрагивая других аспектов проблемы) при
возможном подсчете ресурсов (запасов) “сланцевого” газа.

Ключевые слова: летучие компоненты; флюидные включения; закрытые поры; “сланцевый” газ;
гранитолитовые аргиллиты; силур; Львовский палеозойский прогиб.

Received 10.04.2017