
Tasks Scaling with Chameleon© C2HDL Design Tool in Self-Configurable Computer Systems… 31

ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 1, No. 1, 2016

TASKS SCALING WITH CHAMELEON© C2HDL DESIGN TOOL
IN SELF-CONFIGURABLE COMPUTER SYSTEMS 3 BASED ON

PARTIALLY RECONFIGURABLE FPGAS

Anatoliy Melnyk, Viktor Melnyk, Liubomyr Tsyhylyk

Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine
Author e-mail: aomelnyk@lp.edu.ua

Submitted on 24.03.2016

 Melnyk А., 2016

Abstract: The FPGA-based accelerators and
reconfigurable computer systems based on them require
designing the application-specific processor soft-cores and
are effective for certain classes of problems only, for which
application-specific processor soft-cores were previously
developed. In Self-Configurable FPGA-based Computer
Systems the problem of designing the application-specific
processor soft-cores is solved with use of the C2HDL tools,
allowing them to be generated automatically. In this paper,
we study the questions of the self-configurable computer
systems efficiency increasing with use of the partially
reconfigurable FPGAs and Chameleon© C2HDL design
tool. One of the features of the Chameleon© C2HDL design
tool is its ability to generate a number of application-
specific processor soft-cores executing the same algorithm
that differ by the amount of FPGA resources required for
their implementation. If the self-configurable computer
systems are based on partially reconfigurable FPGAs, this
feature allows them to acquire in every moment of its
operation such a configuration that will provide an optimal
use of its reconfigurable logic at a given level of hardware
multitasking.

Key words: self-configurable computer systems, field-

programmable gate arrays, high-performance computing,
reconfigurable computing, hardware multitasking, C2HDL
design tools.

I. INTRODUCTION
The self-configurable computer system is the

computer system with reconfigurable logic, where
program compilation includes automatically performed
actions of creating configuration, and which acquires
that configuration automatically in the time of program
loading for execution [1]. The property of the self-
configurability is intended to be employed not only in
the general-purpose and high-performance computer
systems with reconfigurable logic, but also in embedded
and application specific ones. Particularly, it concerns
the reconfigurable hardware platforms of the cyber-
physical systems.

Implementation of the SCCS basing on partially
reconfigurable FPGAs [2] enables organization of
multiple-task execution in the reconfigurable
environment [3], [4]. This opportunity is provided as the
subprograms of different tasks are executed
independently in FPGA’s different reconfigurable
regions, and each of them is loaded into the FPGA as a
partial configuration after initialization of the respective
program. Such SCCS operation has a number of
advantages, among which there are the actual
multitasking, an effective use of the reconfigurable logic
and rationalization of energy consumption. At the same
time, this mode of the SCCS operation imposes
additional requirements for the generating system to
create the application-specific processors HDL-models.
Depending on the workload of the computer system, the
amount of available for one separate task reconfigurable
logic resources at a time can range from a maximum
value that corresponds to all FPGA dynamic part
resource, to the minimum value that corresponds to one
or a number of reconfigurable regions, and vice versa.
The question arises to organize dynamic reallocation of
the reconfigurable logic resources and replace some
running application-specific processors with others
performing the same tasks but differ by the equipment
volume. This should be done to provide an effective use
of resources and the required level of multitasking.

To address this challenge it is necessary, during the
program compilation, for each subprogram executed in
the reconfigurable environment, to generate a number of
application-specific processors HDL-models ASPM
{ASPMopt, …, ASPMmin}; where ASPMopt is an optimum
HDL-model that uses all the space-time properties of an
algorithm given by the subprogram and to be
implemented requires the largest amount of the
reconfigurable logic resources among the ASPM models;
ASPMmin is an HDL-model that to be implemented
requires the minimum amount of the resources. In this
regard, we propose the Chameleon© C2HDL design tool
[5], [6], which for each algorithm, given by the ANSI C

Anatoliy Melnyk et al. 32

program, can generate a set of application-specific
processors VHDL soft-cores that differ by the amount of
equipment to be implemented.

The paper structure is the following: Section II shows
the partially reconfigurable FPGAs operation basics.
Section III shows programs execution features in SCCS
based on partially reconfigurable FPGAs. Section IV
introduces the characteristics and features of the
Chameleon© C2HDL design tool. Section V shows an
example of application of the Chameleon© C2HDL
design tool in the SCCS for creation of a set of FFT
processors VHDL models. In our experiment the
reconfigurable environment of the SCCS is built on the
Altera FPGA, therefore created processors models are
targeted at being implemented in this FPGA and differ
mainly by the number of the embedded DSP blocks they
use. The duration of these FFT processors VHDL
models generation and their technical characteristics are
shown. Section VI concludes the paper.

II. PARTIALLY RECONFIGURABLE FPGAS
OPERATION BASICS

The ability to reconfigure a part of an FPGA circuitry
after its initial configuration while the other parts remain
unaffected is referred to as partial reconfiguration. The
direct benefits of using this ability is a significant
reduction of the duration of reconfiguring and reduction
of the memory size required for the configuration storage
(the size of the bit-stream is directly proportional to the
number of resources being configured [2]). Also, this
ability opens new possibilities for the reconfigurable
logic application in computers, particularly it allows
organizing hardware multitasking in FPGA [3], [4] and
embodying the concept of Virtual Hardware [7], [8], that
is combined extremely well with the concept of SCCS
design.

Partial reconfiguration is carried out in FPGA by
downloading partial configurations files after its initial
configuration, and thus – during the operation. These
files specify only the configuration of the FPGA parts
called Reconfigurable Partitions or Reconfigurable
Regions, each of them contains separate device's
modules. Reconfigurable partitions contain a certain
amount of equipment and have a clearly defined location
and boundaries in the FPGA circuitry. In this regard, the
device needs a modular structure. The modules loaded
into the reconfigurable partitions are called
Reconfigurable Modules.

Partial reconfiguration can be static, when the device
is not active during the reconfiguration process (while the
partial configuration data is sent into the FPGA, the rest of
it is stopped and brought up after the configuration is
completed), and dynamic, also known as active partial
reconfiguration, which enables changing the part of the
FPGA while the rest of it is still operating [9].

Besides one or more reconfigurable regions, a
partially reconfigurable FPGA also contains a static

region which remains unchanged during partial
reconfiguration. For example, partial reconfiguration
controller, memory and interface logic can operate in
this region. The Partial Reconfiguration Controller
automates the mentioned process. The user can develop
a controller by himself or can use ready available on the
market solution. The controller can also be external to
the FPGA device.

Two modes of the partial reconfiguration are used:
q Module-based – Implies creation of a

reconfigurable module and, with the help of relevant
software, generation of its partial configuration code.
This code completely replaces the previously
synthesized reconfigurable module in the selected
reconfigurable region. Note that this approach requires
interfaces interoperability of all reconfigurable modules
that operate in one reconfigurable region.
q Difference-based – Implies introducing small

changes to the scheme of the previously synthesized
reconfigurable module. Partial configuration code
contains information about the differences between the
structures of the existing and new modules operating in
the reconfigurable region, and is formed by “fusion” of
the binary codes of the previously loaded to the FPGA
configuration with the new one, for example, using XOR
operation [10]. This approach makes it possible to
significantly reduce the size of configuration code. It is
used, for example, to replace the contents of table
operating device, memory contents, etc. This approach is
especially interesting for implementation of evolutionary
algorithms.

Partial reconfiguration design flow and mechanisms
are being continuously improved. For example, in
Virtex, Virtex-II, Virtex-II Pro and Virtex-E FPGAs
from Xilinx, the configuration can be changed only by
full columns of the reconfigurable matrix, and their
numbers have to be multiples of 4 (4, 8, 12, ...). In
Virtex-4 FPGAs this restriction is eliminated, while it is
possible to change the configuration of an arbitrary
rectangular area of the matrix, with some restrictions on
its height. In modern Xilinx FPGAs (today it is 7th
generation: Artix-7, Kintex-7, Virtex-7 and Zynq-7000
SoC) the minimum regions whose configuration can be
changed independently are called Reconfigurable
Frames. The width of the reconfigurable frames is one
element (there are different types of elements, including
CLB, BRAM, DSP), while the height – the one clock
region or input/output block. Some examples are as
follows: in the Xilinx FPGAs 7th generation devices
 [11] – CLB: 50×1; DSP48: 10×1; RAM: 10×1; in the
UltraScale devices [12] – CLB: 60×1; DSP48: 24×1;
RAM: 12×1.

A partial configuration file consists of a certain
number of configuration frames (not to be confused with
the reconfigurable frames). The configuration frame is
the minimum unit of information of this file and sets a
configuration for one reconfigurable frame.

Tasks Scaling with Chameleon© C2HDL Design Tool in Self-Configurable Computer Systems… 33

In the Altera FPGAs, the partial reconfiguration is
implemented similarly [13].

III. HARDWARE MULTITASKING AND TASKS
SCALING IN SCCS BASED ON PARTIALLY

RECONFIGURABLE FPGAS
Deploying partially reconfigurable FPGAs in SCCS

gives an opportunity to execute in these FPGAs a
number of PRCE subprograms simultaneously. Taking
into account that duration of the partial reconfiguration
versus the full one is significantly shorter, we can
confidently say that it makes it possible to organize a
real hardware multitasking in the SCCS reconfigurable
environment.

The basic principles of hardware multitasking
realization in SCCS based on the partially reconfigurable
FPGAs are:

1. At the stage of the program compiling the HDL-
model ASPM to perform PRCE subprogram, represented
as a reconfigurable module, is being generated. At the
same stage this reconfigurable module is being compiled
into the FPGA partial configuration file.

2. At the stage of the program loading, after its
initialization, partial configuration file is being loaded
into the reconfigurable region specified by the SCCS
operating system.

3. Partially reconfigurable FPGA comprises a
number of reconfigurable regions for the reconfigurable
module synthesis.

4. Single reconfigurable module may occupy one to
NRP reconfigurable regions, where NRP is a total
number of reconfigurable regions in the partially
reconfigurable FPGA.

5. In the partially reconfigurable FPGA may
simultaneously operate up to NRP reconfigurable modules.

6. If necessary, reconfigurable modules can use
single reconfigurable region RRk in a time multiplexing
mode. To replace modules in this reconfigurable region
the context switching is performed.

Besides the reconfigurable regions, in the partially
reconfigurable FPGA the auxiliary means for the
hardware multitasking support also have to be placed,
which will enable quick loading of the partial
configuration and context switching. Together with the
reconfigurable regions these means form the platform for
hardware multitasking realization in the partially
reconfigurable FPGA. The structure of such platform,
which is based on the abovementioned principles of
hardware multitasking realization, is shown in Fig. 1.
The means for the hardware multitasking support are
located here within the static region of FPGA, while the
reconfigurable regions have predefined placement,
dimensions and interfaces.

In order to organize a context switching, which
should be done in a minimal runtime, the fast embedded
memory blocks are used for short-term data storage – the
partial configurations cache memory and the context

memory. The context switching, as well as the partial
configurations loading from the respected cache
memory, performs the partial reconfiguration controller.
Instructions memory includes programs for the partial
configurations loading, context switching, which include
context saving and restoring, and tasks relocation in the
FPGA. Besides these programs, the controller provides
overall control of the platform components.

Fig. 1. The Structure of a platform for hardware multitasking
realization in the partially reconfigurable FPGA

RR1 RR2

RR4 RR5

RR7 RR8

RR3

RR6

RR9

RR1 RR2

RR4 RR5

RR7 RR8

RR3

RR6

RR9

RR1 RR2

RR4 RR5

RR7 RR8

RR3

RR6

RR9

RR1 RR2

RR4 RR5

RR7 RR8

RR3

RR6

RR9

Free reconfigurable region

Reconfigurable module 1

Reconfigurable module 2

Reconfigurable module 3

(III) (IV)

(I) (II)

Fig. 2. Reconfigurable regions reallocations for the
reconfigurable module 1 running in the FPGA in order

to load the reconfigurable module 3

In the course of the SCCS operation, different
reconfigurable modules performing different PRCE
subprograms are being loaded into the FPGA
reconfigurable regions. Depending on the workload of
the SCCS, the amount of available resources for one
separate reconfigurable module at a time can range from
a maximum value that corresponds to all FPGA dynamic
part resource, to the minimum value that corresponds to
one or a number of reconfigurable regions, and vice
versa. The question arises to organizing dynamic

Anatoliy Melnyk et al. 34

reallocation of the reconfigurable regions and replacing
some running application-specific processors with others
performing the same tasks but differing by the
equipment volume. This should be done to provide an
effective use of resources and the required level of
multitasking. An example in Fig. 2 shows the situation
when the reconfigurable regions must be reallocated for
the reconfigurable module 1 running in the FPGA in
order to load the reconfigurable module 3.

To address this challenge it is necessary, during the
program compilation, for each subprogram executed in
the reconfigurable environment, to generate a number of
application-specific processors HDL-models ASPM
{ASPMopt, …, ASPMmin}; where ASPMopt is an optimum
HDL-model that uses all the space-time properties of an
algorithm given by the subprogram and to be
implemented requires the largest amount of the
reconfigurable logic resources among the ASPM models;
ASPMmin is an HDL-model that to be implemented
requires the minimum amount of the resources. In this
regard, we have used the Chameleon© C2HDL design
tool, which for each algorithm, given by the ANSI C
program, can generate a set of application-specific
processors VHDL soft-cores that differ by the amount of
equipment to be implemented. This provides tasks
scaling in the reconfigurable environment. The
Chameleon© C2HDL design tool characteristics and
features are discussed below.

IV. CHAMELEON© C2HDL DESIGN TOOL
The Chameleon© C2HDL design tool is initially

targeted for use in the heterogeneous FPGA-based
computer systems. It is intended for the ASP’s HDL-
model automatic generation from the algorithm
described in the ANSI C language [5], [6], [14]. The
developer, specifying an algorithm of the data processing
on ANSI C, gets in return a fully debugged and
synthesizable VHDL RTL model of the device that
implements the described algorithm. The architecture of
the device is fully optimized for the executed algorithm
and maximally uses its ability for paralleling. The
obtained VHDL design may be further imple mented in
the FPGA by any FPGA design solution, e.g. the Xilinx
Vivado Design Suit or Altera Quartus II.

Besides the algorithm of the data processing, the
input information for the Chameleon© C2HDL design
tool are also the ASP’s interface specification and tech-
nical characteristics, for example, desired performance
boundary. The platform for the ASP synthesis is
configurable processor architecture configured according
to the following input parameters:
q desired performance (the number of parallel

Functional Units),
q the width of data structure,
q the minimal percentage of commands that should

load each parallel Functional Unit,
q the communication network structure.

The Chameleon© C2HDL design tool features are
following:

1. Short generation time. For example, generation
of the FFT 64-points processor VHDL model with 15
parallel Functional Units takes several seconds on a
conventional PC.

2. Desired pre-set level of the algorithm
parallelization.

3. Quick search of the appropriate level of
parallelization to achieve the desired ASP’s performance
or power consumption.

The architecture of the ASP is tested and verified
automatically, which eliminates the probability of
synthesis and operation errors.

Thus, this tool can be effectively used in the SCCS,
and the example of its usage is shown in the next section.
The basic scheme of the Chameleon© C2HDL design
tool operation is shown in Fig. 3.

V. EXPERIMENTAL RESULTS
We have used the Chameleon© C2HDL design tool

as one of the basic software means of the SCCS
compiler. The SCCS hardware platform is realized on
the base of the conventional personal computer running
on the Windows OS and the reconfigurable environment
built on the Cyclone V FPGA from Altera. The RCE
subprogram chosen for the experiment represents the
algorithm of the 64-points Fast Fourier Transformation
in the ANSI C language, its code is given in Fig. 4. This
program has been submitted to the input of the
Chameleon© C2HDL design tool, and a set of the RTL
VHDL-models of the 64-points FFT processors, whose
structures contain a different number of Functional
Units, has been automatically generated. As a most
productive the one containing 13 Functional Units was
determined by the Chameleon© C2HDL design tool; in
all the models a number of these modules is determined
automatically. The Functional Units are implemented in
the Cyclone V FPGA as an embedded DSP blocks in
relation 1×1.

Depending on the workload, the SCCS operating
system can choose the FPGA partial configuration that
contains an appropriate by the equipment amount or a
performance FFT processor and replace the operating in
the RCE instance of the processor to another on the run.
Table 1 shows the technical characteristics of the FFT
processors VHDL-models generated with Chameleon©
C2HDL design tool, and synthesised in the Cyclone V
5CSEMA5F31C6 device by the Quartus II 13.1.0 Web
Edition.

The time required by the SCCS for the FFT
processors VHDL-models generation generally increases
linearly with increasing the number of parallel
Functional Units (see Fig. 5). The main part of the
generation time is spent on the algorithm parallelization
and schematic optimization.

Tasks Scaling with Chameleon© C2HDL Design Tool in Self-Configurable Computer Systems… 35

Fig. 3. Basic Scheme of Chameleon© C2HDL

Design Tool Operation

Fig. 4. Program of 64-Point FFT Algorithm in ANSI C

In Fig. 6, the dependencies of the FFT execution time

and the amount of the reconfigurable logic resources to
the number of the Functional Units (regarded as the
Parallel ALUs) are shown. Basing on this data, the
SCCS operating system can choose which FFT processor
configuration to acquire at a certain moment of its
operation, depending on the actual workload. For
example, the configuration consuming 1809 LUTs
executes FFT in 9.31 us, and configuration consuming
9200 LUTs – in 1.27 us.

Table 1

Technical Characteristics of FFT Processors

Number of the

Functional Units LUT utilization Maximum Frequency
(MHz) Commands count FFT time

(us)
1 1, 809 / 32, 070 (6 %) 204, 08 1900 9, 31

2 2, 380 / 32, 070 (7 %) 200, 32 1015 5, 07

4 3, 054 / 32, 070 (10 %) 216, 8 575 2, 65

7 4, 806 / 32, 070 (15 %) 174, 52 388 2, 22

8 4, 858 / 32, 070 (15 %) 190, 73 352 1, 85

10 6, 715 / 32, 070 (21 %) 171, 85 311 1, 81

13 9, 200 / 32, 070 (29 %) 149, 7 190 1, 27

15 10, 198 / 32, 070 (32 %) 138, 48 180 1, 30

Fig. 5. Time Required for 64-Points FFT Processors VHDL-Models Generation

Anatoliy Melnyk et al. 36

Fig. 6. FFT Execution Time and LUT Usage Dependency vs Number of Functional Units for 64-Point FFT Processors

VI. CONCLUSIONS
Implementation of the SCCS based on partially

reconfigurable FPGAs enables organization of the
simultaneous multiple-task execution in the
reconfigurable environment of the SCCS as the
subprograms of different tasks are executed
independently in different reconfigurable regions of the
FPGA. Such SCCS operation has a number of
advantages, among which, besides the actual
multitasking is effective use of the reconfigurable logic
and rationalization of energy consumption. At the same
time, this mode of the SCCS operation imposes
additional requirements for the generating system to
create the application-specific processors HDL-models.
The question arises to organize dynamic re-allocation of
the reconfigurable logic resources and replace some
running application-specific processors with others
performing the same task but differing by the equipment
volume. This should be done to provide an effective use
of resources and the required level of multitasking. To
address this challenge, it is necessary, during the
program compilation, for each subprogram executed in
the reconfigurable environment, to generate a number of
application-specific processors HDL-models. We
propose in this regard to use the Chameleon© C2HDL
design tool.

In the article, we consider the SCCS structure and the
method of information processing in it. We highlight the
partially reconfigurable FPGAs operation basics. We
identify the basic principles of hardware multitasking
realization in SCCS based on the partially reconfigurable
FPGAs propose the structure of a platform for hardware
multitasking realization in the partially reconfigurable
FPGA. We also consider the Chameleon© C2HDL
design tool operation and features among which short
generation time, desired pre-set level of the algorithm
parallelization, automatic generation of tested and
verified ASP HDL models. One of the features of the
Chameleon© C2HDL design tool is its ability to generate
a number of application-specific processor soft-cores
executing the same algorithm differing by the amount of
FPGA resources required for their implementation. For
the self-configurable computer systems based on
partially reconfigurable FPGAs this feature allows
acquiring in every moment of its operation configuration
that will provide an optimal use of its reconfigurable
logic at a given level of hardware multitasking.

To estimate the benefit, we have experimented with
the Chameleon© C2HDL design tool as one of the basic
software means of the SCCS compiler. The SCCS
hardware platform is realized on the base of the
conventional personal computer running on the
Windows OS and the reconfigurable environment built

Tasks Scaling with Chameleon© C2HDL Design Tool in Self-Configurable Computer Systems… 37

on the Cyclone V FPGA from Altera. Chosen for the
experiment RCE subprogram represents the algorithm of
the 64-points Fast Fourier Transformation in the ANSI C
language. This program has been given to the input of
the Chameleon© C2HDL design tool, and a set of the
RTL VHDL-models of the 64-points FFT processors has
been automatically generated. The experimental results
have shown that the Chameleon© C2HDL design tool
generates a set of FFT processors with high technical
characteristics in very short time, and satisfies the basic
requirements for a generating system of the SCCS to
provide its effective operation.

REFERENCES
[1] Melnyk, A., Melnyk, V., “Self-Configurable FPGA-Based

Computer Systems” Advances in Electrical and Computer
Engineering, vol. 13, no. 2, pp. 33–38, 2013, doi:10.4316/
AECE.2013.02005. [Online]. Available: http://www.aece.ro/
abstractplus.php?year=2013&number=2&article=5

[2] E.J.McDonald, Runtime FPGA Partial Reconfiguration.
Aerospace Conference, 2008 IEEE, Los Angeles, 2008, pp. 1–7.

[3] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez,
“Methods and mechanisms for hardware multitasking: executing
and synchronizing fully relocatable hardware tasks in Xilinx
FPGAs” inProceedings of the 21st International Conference on
Field Programmable Logic and Applications (FPL '11), pp. 295–
300, September 2011.

[4] H. Kalte and M. Porrmann, Context Saving and Restoring for
Multitasking in Reconfigurable Systems, Proc. of the
International Conference on FieldProgrammable Logic and
Applications, pp. 223–228, 2005.

[5] A. Melnyk, V. Melnyk. “Personal Supercomputers: Architecture,
Design, Application”. Lviv Politechnic National University
Publishing. – 2013. – 516 pp.

[6] Chameleon – the System-Level Design Solution. [Online].
Available: http://intron-innovations.com/?p=sld_chame.

[7] G. J. Brebner, A Virtual Hardware Operating System for the
Xilinx XC6200. Proc. of the International Workshop on Field-
Programmable Logic, Smart Applications, New Paradigms and
Compilers, 1996.

[8] G. Brebner. The swappable logic unit: a paradigm for virtual
hardware. In K. L. Pocek and J. M. Arnold, editors, The 5th
Annual IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM’97), pages 77–86, Los Alamitos, CA,
Apr. 1997. IEEE Computer Society Press.

[9] Virtex-4 Configuration Guide, Xilinx, Inc. http://www.
xilinx.com/support/documentation/user_guides/ug071.pdf

[10] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght.
Modular dynamic reconfiguration in Virtex FPGAs. IEE
Proceedings Computers and Digital Techniques, 153(3):157–164,
2006.

[11] Vivado Design Suite User Guide. Partial Reconfiguration.
UG909 (v2015.2) June 24, 2015. Online. Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx
2015_2/ug909-vivado-partial-reconfiguration.pdf

[12] UltraScale Architecture. Online. Available: http://www.
xilinx.com/products/technology/ultrascale.html

[13] Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs. July 2010, Altera Corporation.
Online. Available: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01137-stxv-dynamic-
partial-reconFig. pdf.

[14] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. “Chameleon –
system for specialized processors high-level synthesis”,
Scientific-technical magazine of National Aerospace University
“KhAI”, Kharkiv, 2009. Nо. 5, P. 189–195.

Anatoliy Melnyk since 1994 is a
Head of Computer Engineering
Department at Lviv Polytechnic
National University. He graduated
from Lviv Polytechnic Institute with
the engineer degree in computer
engineering in 1978. In 1985 he
obtained his Ph.D. in Computer
Systems from Moscow Power

Engineering Institute. In 1992 he received his D.Sc. degree
from the Institute of Modeling Problems in Power Engineering
of the National Academy of Science of Ukraine. He was
recognized for his outstanding contributions to high-
performance computer systems design as a Fellow Scientific
Researcher in 1988. He became a Professor of Computer
Engineering in 1996. Since 1982 to 1994 he has been a Head of
Department of Signal Processing Systems at Lviv Radio
Engineering Research Institute. Since 1994 to 2008 he has been
Scientific Director of the Institute of Measurement and
Computer Technique at Lviv Polytechnic National University.
Since 1999 to 2009 he has been Dean of the Department of
Computer and Information Technologies at the Institute of
Business and Perspective Technologies, Lviv, Ukraine. He has
served since 2000 as President and CEO of Intron ltd. He has
also been a visiting professor at Kielce University of
Technology, University of Information Technology and
Management, Rzeszow, University of Bielsko-Biala. Currently
he is a visiting professor at the Department of Numerical
Analysis and Programming of John Paul II Catholic University
of Lublin.

He is an editor in chief of the proceedings “Computer
Systems and Networks” and of the journal “Advances in
Cyber-Physical Systems”. He is a head of the international
conference “Advanced Computer Systems and Networks:
Design and Application” and of the scientific workshop
“Cyber-Physical Systems: Achievements and Challenges”. He
has taken part as a project leader in a large number of research
projects in the field of computer systems. He has published 9
monographs, 1 handbook and over 400 scientific papers and
patents. He is a member of IEEE, ACM, IEE, IACSS, AESU.

Viktor Melnyk is a professor in

the Department of Information
Technologies Security of Lviv
Polytechnic National University in
Ukraine. He was awarded with his
Ph.D in 2004 and Doctor of Technical
Sciences in 2013 at Lviv Polytechnic
National University. He has gained
scientific, academic and hands-on

experience in the field of computers and computer systems
research and design, proven contribution into IP Cores design
methodology and high-performance reconfigurable computer
systems design methodology. He is experienced in computer
data protection, including cryptographic algorithms,
cryptographic processors design and implementation, wireless
sensor network security. Mr. Melnyk is an author of more than
70 scientific papers, patents and monographs.

Anatoliy Melnyk et al. 38

Liubomyr Tsyhylyk is an assistant
in the Department of Computer
Engineering of Lviv Polytechnic
National University. He has gained
hand-on and scientific experience in the
field of IP core design using VHDL,
developing Touch solutions using mic-
rocontrollers, research of methodology
for automation generic reconfigurable
computer systems. Mr. Tsyhylyk is an
author of over 10 scientific papers.

ACKNOWLEDGEMENT
The scientific results, presented in this article, were

obtained within the frame of research project number
0115U000446, 01.01.2015–31.12.2017, financially
supported by the Ministry of Education and Science of
Ukraine.

