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Abstract: The FPGA-based accelerators and 
reconfigurable computer systems based on them require 
designing the application-specific processor soft-cores and 
are effective for certain classes of problems only, for which 
application-specific processor soft-cores were previously 
developed. In Self-Configurable FPGA-based Computer 
Systems the problem of designing the application-specific 
processor soft-cores is solved with use of the C2HDL tools, 
allowing them to be generated automatically. In this paper, 
we study the questions of the self-configurable computer 
systems efficiency increasing with use of the partially 
reconfigurable FPGAs and Chameleon© C2HDL design 
tool. One of the features of the Chameleon© C2HDL design 
tool is its ability to generate a number of application-
specific processor soft-cores executing the same algorithm 
that differ by the amount of FPGA resources required for 
their implementation. If the self-configurable computer 
systems are based on partially reconfigurable FPGAs, this 
feature allows them to acquire in every moment of its 
operation such a configuration that will provide an optimal 
use of its reconfigurable logic at a given level of hardware 
multitasking. 
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I. INTRODUCTION 
The self-configurable computer system is the 

computer system with reconfigurable logic, where 
program compilation includes automatically performed 
actions of creating configuration, and which acquires 
that configuration automatically in the time of program 
loading for execution [1]. The property of the self-
configurability is intended to be employed not only in 
the general-purpose and high-performance computer 
systems with reconfigurable logic, but also in embedded 
and application specific ones. Particularly, it concerns 
the reconfigurable hardware platforms of the cyber-
physical systems. 

Implementation of the SCCS basing on partially 
reconfigurable FPGAs [2] enables organization of 
multiple-task execution in the reconfigurable 
environment [3], [4]. This opportunity is provided as the 
subprograms of different tasks are executed 
independently in FPGA’s different reconfigurable 
regions, and each of them is loaded into the FPGA as a 
partial configuration after initialization of the respective 
program. Such SCCS operation has a number of 
advantages, among which there are the actual 
multitasking, an effective use of the reconfigurable logic 
and rationalization of energy consumption. At the same 
time, this mode of the SCCS operation imposes 
additional requirements for the generating system to 
create the application-specific processors HDL-models. 
Depending on the workload of the computer system, the 
amount of available for one separate task reconfigurable 
logic resources at a time can range from a maximum 
value that corresponds to all FPGA dynamic part 
resource, to the minimum value that corresponds to one 
or a number of reconfigurable regions, and vice versa. 
The question arises to organize dynamic reallocation of 
the reconfigurable logic resources and replace some 
running application-specific processors with others 
performing the same tasks but differ by the equipment 
volume. This should be done to provide an effective use 
of resources and the required level of multitasking. 

To address this challenge it is necessary, during the 
program compilation, for each subprogram executed in 
the reconfigurable environment, to generate a number of 
application-specific processors HDL-models ASPM 
{ASPMopt, …, ASPMmin}; where ASPMopt is an optimum 
HDL-model that uses all the space-time properties of an 
algorithm given by the subprogram and to be 
implemented requires the largest amount of the 
reconfigurable logic resources among the ASPM models; 
ASPMmin is an HDL-model that to be implemented 
requires the minimum amount of the resources. In this 
regard, we propose the Chameleon© C2HDL design tool 
[5], [6], which for each algorithm, given by the ANSI C 
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program, can generate a set of application-specific 
processors VHDL soft-cores that differ by the amount of 
equipment to be implemented. 

The paper structure is the following: Section II shows 
the partially reconfigurable FPGAs operation basics. 
Section III shows programs execution features in SCCS 
based on partially reconfigurable FPGAs. Section IV 
introduces the characteristics and features of the 
Chameleon© C2HDL design tool. Section V shows an 
example of application of the Chameleon© C2HDL 
design tool in the SCCS for creation of a set of FFT 
processors VHDL models. In our experiment the 
reconfigurable environment of the SCCS is built on the 
Altera FPGA, therefore created processors models are 
targeted at being implemented in this FPGA and differ 
mainly by the number of the embedded DSP blocks they 
use. The duration of these FFT processors VHDL 
models generation and their technical characteristics are 
shown. Section VI concludes the paper. 

II. PARTIALLY RECONFIGURABLE FPGAS 
OPERATION BASICS 

The ability to reconfigure a part of an FPGA circuitry 
after its initial configuration while the other parts remain 
unaffected is referred to as partial reconfiguration. The 
direct benefits of using this ability is a significant 
reduction of the duration of reconfiguring and reduction 
of the memory size required for the configuration storage 
(the size of the bit-stream is directly proportional to the 
number of resources being configured [2]). Also, this 
ability opens new possibilities for the reconfigurable 
logic application in computers, particularly it allows 
organizing hardware multitasking in FPGA [3], [4] and 
embodying the concept of Virtual Hardware [7], [8], that 
is combined extremely well with the concept of SCCS 
design. 

Partial reconfiguration is carried out in FPGA by 
downloading partial configurations files after its initial 
configuration, and thus – during the operation. These 
files specify only the configuration of the FPGA parts 
called Reconfigurable Partitions or Reconfigurable 
Regions, each of them contains separate device's 
modules. Reconfigurable partitions contain a certain 
amount of equipment and have a clearly defined location 
and boundaries in the FPGA circuitry. In this regard, the 
device needs a modular structure. The modules loaded 
into the reconfigurable partitions are called 
Reconfigurable Modules. 

Partial reconfiguration can be static, when the device 
is not active during the reconfiguration process (while the 
partial configuration data is sent into the FPGA, the rest of 
it is stopped and brought up after the configuration is 
completed), and dynamic, also known as active partial 
reconfiguration, which enables changing the part of the 
FPGA while the rest of it is still operating [9]. 

Besides one or more reconfigurable regions, a 
partially reconfigurable FPGA also contains a static 

region which remains unchanged during partial 
reconfiguration. For example, partial reconfiguration 
controller, memory and interface logic can operate in 
this region. The Partial Reconfiguration Controller 
automates the mentioned process. The user can develop 
a controller by himself or can use ready available on the 
market solution. The controller can also be external to 
the FPGA device. 

Two modes of the partial reconfiguration are used: 
q Module-based – Implies creation of a 

reconfigurable module and, with the help of relevant 
software, generation of its partial configuration code. 
This code completely replaces the previously 
synthesized reconfigurable module in the selected 
reconfigurable region. Note that this approach requires 
interfaces interoperability of all reconfigurable modules 
that operate in one reconfigurable region. 
q Difference-based – Implies introducing small 

changes to the scheme of the previously synthesized 
reconfigurable module. Partial configuration code 
contains information about the differences between the 
structures of the existing and new modules operating in 
the reconfigurable region, and is formed by “fusion” of 
the binary codes of the previously loaded to the FPGA 
configuration with the new one, for example, using XOR 
operation [10]. This approach makes it possible to 
significantly reduce the size of configuration code. It is 
used, for example, to replace the contents of table 
operating device, memory contents, etc. This approach is 
especially interesting for implementation of evolutionary 
algorithms. 

Partial reconfiguration design flow and mechanisms 
are being continuously improved. For example, in 
Virtex, Virtex-II, Virtex-II Pro and Virtex-E FPGAs 
from Xilinx, the configuration can be changed only by 
full columns of the reconfigurable matrix, and their 
numbers have to be multiples of 4 (4, 8, 12, ...). In 
Virtex-4 FPGAs this restriction is eliminated, while it is 
possible to change the configuration of an arbitrary 
rectangular area of the matrix, with some restrictions on 
its height. In modern Xilinx FPGAs (today it is 7th 
generation: Artix-7, Kintex-7, Virtex-7 and Zynq-7000 
SoC) the minimum regions whose configuration can be 
changed independently are called Reconfigurable 
Frames. The width of the reconfigurable frames is one 
element (there are different types of elements, including 
CLB, BRAM, DSP), while the height – the one clock 
region or input/output block. Some examples are as 
follows: in the Xilinx FPGAs 7th generation devices 
 [11] – CLB: 50×1; DSP48: 10×1; RAM: 10×1; in the 
UltraScale devices [12] – CLB: 60×1; DSP48: 24×1; 
RAM: 12×1. 

A partial configuration file consists of a certain 
number of configuration frames (not to be confused with 
the reconfigurable frames). The configuration frame is 
the minimum unit of information of this file and sets a 
configuration for one reconfigurable frame. 
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In the Altera FPGAs, the partial reconfiguration is 
implemented similarly [13]. 

III. HARDWARE MULTITASKING AND TASKS 
SCALING IN SCCS BASED ON PARTIALLY 

RECONFIGURABLE FPGAS 
Deploying partially reconfigurable FPGAs in SCCS 

gives an opportunity to execute in these FPGAs a 
number of PRCE subprograms simultaneously. Taking 
into account that duration of the partial reconfiguration 
versus the full one is significantly shorter, we can 
confidently say that it makes it possible to organize a 
real hardware multitasking in the SCCS reconfigurable 
environment. 

The basic principles of hardware multitasking 
realization in SCCS based on the partially reconfigurable 
FPGAs are: 

1. At the stage of the program compiling the HDL-
model ASPM to perform PRCE subprogram, represented 
as a reconfigurable module, is being generated. At the 
same stage this reconfigurable module is being compiled 
into the FPGA partial configuration file. 

2. At the stage of the program loading, after its 
initialization, partial configuration file is being loaded 
into the reconfigurable region specified by the SCCS 
operating system. 

3. Partially reconfigurable FPGA comprises a 
number of reconfigurable regions for the reconfigurable 
module synthesis. 

4. Single reconfigurable module may occupy one to 
NRP reconfigurable regions, where NRP is a total 
number of reconfigurable regions in the partially 
reconfigurable FPGA. 

5. In the partially reconfigurable FPGA may 
simultaneously operate up to NRP reconfigurable modules. 

6. If necessary, reconfigurable modules can use 
single reconfigurable region RRk in a time multiplexing 
mode. To replace modules in this reconfigurable region 
the context switching is performed. 

Besides the reconfigurable regions, in the partially 
reconfigurable FPGA the auxiliary means for the 
hardware multitasking support also have to be placed, 
which will enable quick loading of the partial 
configuration and context switching. Together with the 
reconfigurable regions these means form the platform for 
hardware multitasking realization in the partially 
reconfigurable FPGA. The structure of such platform, 
which is based on the abovementioned principles of 
hardware multitasking realization, is shown in Fig. 1. 
The means for the hardware multitasking support are 
located here within the static region of FPGA, while the 
reconfigurable regions have predefined placement, 
dimensions and interfaces. 

In order to organize a context switching, which 
should be done in a minimal runtime, the fast embedded 
memory blocks are used for short-term data storage – the 
partial configurations cache memory and the context 

memory. The context switching, as well as the partial 
configurations loading from the respected cache 
memory, performs the partial reconfiguration controller. 
Instructions memory includes programs for the partial 
configurations loading, context switching, which include 
context saving and restoring, and tasks relocation in the 
FPGA. Besides these programs, the controller provides 
overall control of the platform components. 

 

 
 

Fig. 1. The Structure of a platform for hardware multitasking 
realization in the partially reconfigurable FPGA 
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Fig. 2.  Reconfigurable regions reallocations for the 
reconfigurable module 1 running in the FPGA in order  

to load the reconfigurable module 3 
 

In the course of the SCCS operation, different 
reconfigurable modules performing different PRCE 
subprograms are being loaded into the FPGA 
reconfigurable regions. Depending on the workload of 
the SCCS, the amount of available resources for one 
separate reconfigurable module at a time can range from 
a maximum value that corresponds to all FPGA dynamic 
part resource, to the minimum value that corresponds to 
one or a number of reconfigurable regions, and vice 
versa. The question arises to organizing dynamic 
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reallocation of the reconfigurable regions and replacing 
some running application-specific processors with others 
performing the same tasks but differing by the 
equipment volume. This should be done to provide an 
effective use of resources and the required level of 
multitasking. An example in Fig. 2 shows the situation 
when the reconfigurable regions must be reallocated for 
the reconfigurable module 1 running in the FPGA in 
order to load the reconfigurable module 3. 

To address this challenge it is necessary, during the 
program compilation, for each subprogram executed in 
the reconfigurable environment, to generate a number of 
application-specific processors HDL-models ASPM 
{ASPMopt, …, ASPMmin}; where ASPMopt is an optimum 
HDL-model that uses all the space-time properties of an 
algorithm given by the subprogram and to be 
implemented requires the largest amount of the 
reconfigurable logic resources among the ASPM models; 
ASPMmin is an HDL-model that to be implemented 
requires the minimum amount of the resources. In this 
regard, we have used the Chameleon© C2HDL design 
tool, which for each algorithm, given by the ANSI C 
program, can generate a set of application-specific 
processors VHDL soft-cores that differ by the amount of 
equipment to be implemented. This provides tasks 
scaling in the reconfigurable environment. The 
Chameleon© C2HDL design tool characteristics and 
features are discussed below. 

IV. CHAMELEON© C2HDL DESIGN TOOL 
The Chameleon© C2HDL design tool is initially 

targeted for use in the heterogeneous FPGA-based 
computer systems. It is intended for the ASP’s HDL-
model automatic generation from the algorithm 
described in the ANSI C language [5], [6], [14]. The 
developer, specifying an algorithm of the data processing 
on ANSI C, gets in return a fully debugged and 
synthesizable VHDL RTL model of the device that 
implements the described algorithm. The architecture of 
the device is fully optimized for the executed algorithm 
and maximally uses its ability for paralleling. The 
obtained VHDL design may be further imple mented in 
the FPGA by any FPGA design solution, e.g. the Xilinx 
Vivado Design Suit or Altera Quartus II. 

Besides the algorithm of the data processing, the 
input information for the Chameleon© C2HDL design 
tool are also the ASP’s interface specification and tech-
nical characteristics, for example, desired performance 
boundary. The platform for the ASP synthesis is 
configurable processor architecture configured according 
to the following input parameters: 
q desired performance (the number of parallel 

Functional Units),  
q the width of data structure,  
q the minimal percentage of commands that should 

load each parallel Functional Unit,  
q the communication network structure. 

The Chameleon© C2HDL design tool features are 
following: 

1. Short generation time. For example, generation 
of the FFT 64-points processor VHDL model with 15 
parallel Functional Units takes several seconds on a 
conventional PC. 

2. Desired pre-set level of the algorithm 
parallelization. 

3. Quick search of the appropriate level of 
parallelization to achieve the desired ASP’s performance 
or power consumption. 

The architecture of the ASP is tested and verified 
automatically, which eliminates the probability of 
synthesis and operation errors. 

Thus, this tool can be effectively used in the SCCS, 
and the example of its usage is shown in the next section. 
The basic scheme of the Chameleon© C2HDL design 
tool operation is shown in Fig. 3. 

V. EXPERIMENTAL RESULTS 
We have used the Chameleon© C2HDL design tool 

as one of the basic software means of the SCCS 
compiler. The SCCS hardware platform is realized on 
the base of the conventional personal computer running 
on the Windows OS and the reconfigurable environment 
built on the Cyclone V FPGA from Altera. The RCE 
subprogram chosen for the experiment represents the 
algorithm of the 64-points Fast Fourier Transformation 
in the ANSI C language, its code is given in Fig. 4. This 
program has been submitted to the input of the 
Chameleon© C2HDL design tool, and a set of the RTL 
VHDL-models of the 64-points FFT processors, whose 
structures contain a different number of Functional 
Units, has been automatically generated. As a most 
productive the one containing 13 Functional Units was 
determined by the Chameleon© C2HDL design tool; in 
all the models a number of these modules is determined 
automatically. The Functional Units are implemented in 
the Cyclone V FPGA as an embedded DSP blocks in 
relation 1×1. 

Depending on the workload, the SCCS operating 
system can choose the FPGA partial configuration that 
contains an appropriate by the equipment amount or a 
performance FFT processor and replace the operating in 
the RCE instance of the processor to another on the run. 
Table 1 shows the technical characteristics of the FFT 
processors VHDL-models generated with Chameleon© 
C2HDL design tool, and synthesised in the Cyclone V 
5CSEMA5F31C6 device by the Quartus II 13.1.0 Web 
Edition. 

The time required by the SCCS for the FFT 
processors VHDL-models generation generally increases 
linearly with  increasing the number of parallel 
Functional Units (see Fig. 5). The main part of the 
generation time is spent on the algorithm parallelization 
and schematic optimization. 
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Fig. 3.  Basic Scheme of Chameleon© C2HDL  

Design Tool Operation 

 

 
Fig. 4.  Program of 64-Point FFT Algorithm in ANSI C 
 
In Fig. 6, the dependencies of the FFT execution time 

and the amount of the reconfigurable logic resources to 
the number of the Functional Units (regarded as the 
Parallel ALUs) are shown. Basing on this data, the 
SCCS operating system can choose which FFT processor 
configuration to acquire at a certain moment of its 
operation, depending on the actual workload. For 
example, the configuration consuming 1809 LUTs 
executes FFT in 9.31 us, and configuration consuming 
9200 LUTs – in 1.27 us. 

 
Table 1 

 
Technical Characteristics of FFT Processors 

 
Number of the 

Functional Units LUT utilization Maximum Frequency 
(MHz) Commands count FFT time 

(us) 
1 1, 809 / 32, 070 (6 %) 204, 08 1900 9, 31 

2 2, 380 / 32, 070 (7 %) 200, 32 1015 5, 07 

4 3, 054 / 32, 070 (10 %) 216, 8 575 2, 65 

7 4, 806 / 32, 070 (15 %) 174, 52 388 2, 22 

8 4, 858 / 32, 070 (15 %) 190, 73 352 1, 85 

10 6, 715 / 32, 070 (21 %) 171, 85 311 1, 81 

13 9, 200 / 32, 070 (29 %) 149, 7 190 1, 27 

15 10, 198 / 32, 070 (32 %) 138, 48 180 1, 30 
 

 
 

Fig. 5. Time Required for 64-Points FFT Processors VHDL-Models Generation 
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Fig. 6.  FFT Execution Time and LUT Usage Dependency vs Number of Functional Units for 64-Point FFT Processors 
 

VI. CONCLUSIONS 
Implementation of the SCCS based on partially 

reconfigurable FPGAs enables organization of the 
simultaneous multiple-task execution in the 
reconfigurable environment of the SCCS as the 
subprograms of different tasks are executed 
independently in different reconfigurable regions of the 
FPGA. Such SCCS operation has a number of 
advantages, among which, besides the actual 
multitasking is effective use of the reconfigurable logic 
and rationalization of energy consumption. At the same 
time, this mode of the SCCS operation imposes 
additional requirements for the generating system to 
create the application-specific processors HDL-models. 
The question arises to organize dynamic re-allocation of 
the reconfigurable logic resources and replace some 
running application-specific processors with others 
performing the same task but differing by the equipment 
volume. This should be done to provide an effective use 
of resources and the required level of multitasking. To 
address this challenge, it is necessary, during the 
program compilation, for each subprogram executed in 
the reconfigurable environment, to generate a number of 
application-specific processors HDL-models. We 
propose in this regard to use the Chameleon© C2HDL 
design tool. 

In the article, we consider the SCCS structure and the 
method of information processing in it. We highlight the 
partially reconfigurable FPGAs operation basics. We 
identify the basic principles of hardware multitasking 
realization in SCCS based on the partially reconfigurable 
FPGAs propose the structure of a platform for hardware 
multitasking realization in the partially reconfigurable 
FPGA. We also consider the Chameleon© C2HDL 
design tool operation and features among which short 
generation time, desired pre-set level of the algorithm 
parallelization, automatic generation of tested and 
verified ASP HDL models. One of the features of the 
Chameleon© C2HDL design tool is its ability to generate 
a number of application-specific processor soft-cores 
executing the same algorithm differing by the amount of 
FPGA resources required for their implementation. For 
the self-configurable computer systems based on 
partially reconfigurable FPGAs this feature allows 
acquiring in every moment of its operation configuration 
that will provide an optimal use of its reconfigurable 
logic at a given level of hardware multitasking. 

To estimate the benefit, we have experimented with 
the Chameleon© C2HDL design tool as one of the basic 
software means of the SCCS compiler. The SCCS 
hardware platform is realized on the base of the 
conventional personal computer running on the 
Windows OS and the reconfigurable environment built 
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on the Cyclone V FPGA from Altera. Chosen for the 
experiment RCE subprogram represents the algorithm of 
the 64-points Fast Fourier Transformation in the ANSI C 
language. This program has been given to the input of 
the Chameleon© C2HDL design tool, and a set of the 
RTL VHDL-models of the 64-points FFT processors has 
been automatically generated. The experimental results 
have shown that the Chameleon© C2HDL design tool 
generates a set of FFT processors with high technical 
characteristics in very short time, and satisfies the basic 
requirements for a generating system of the SCCS to 
provide its effective operation. 
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