ADVANCESIN CYBER-PHYSICAL SYSTEMS

Vol. 1, No. 1, 2016

SELF-CONFIGURABLE FPGA-BASED COMPUTER SYSTEM S:
BASICSAND PROOF OF CONCEPT

Viktor Menyk

Lviv Polytechnic National University, 12, Bandera Sr., Lviv, 79013, Ukraine
Author e-mails: viktor.a.melnyk@gmail.com

Submitted on 30.11.2015
a Mdnyk V., 2016

Abstract: Computer systems performance is today
improved with two major approaches. general-purpose
computer computing power increase (creation of multicore
processors, multiprocessor computer systems, super-
computers), and adaptation of the computer hardware to
the executed algorithm (class of algorithms). The last
approach often provides application of hardware
accderators — ASIC-based and FPGA-based, also named
reconfigurable, and is characterized by better perfor-
mance/ power consumption ratio and lower cost as
compared to the general-purpose computers of equivalent
performance. However, such systems have typical
problems. The ASIC-based accderators. 1) they are
effective only for certain classes of algorithms, 2) for
effective application thereis a need to adapt algorithmsand
software. The FPGA-based accelerators and reconfigurable
computer systems (that use FPGAs as a processing units):
1) the need in the process of writing a program to perform
computing tasks balancing among the general-purpose
computer and FPGA,; 2) the need of designing application-
specific processor s soft-cores; and 3) they are effective only
for certain classes of problems, for which application-
specific processor s soft-cor es wer e previously devel oped.

This paper covers the scope of questions regarding
concept of design, architecture, and proof of concept of the
Self-Configurable FPGA-Based Computer Systems — an
emerging type of high-performance computer systems,
which are deprived of specified challenges. The method of
information processing in reconfigur able computer systems
and its improvements that allow an information processing
efficiency to increase are shown. These improvements are
used as a base for creating a new type of high-performance
computer systems with reconfigurable logic, which are
named sdf-configurable ones, and a new method of
information processing in these systems. The structure of
self-configurable FPGA-based computer system, the rules
of application of computer software and hardware means
necessary for these systems implementation are described.
Major processes on the stages of program loading and
execution in the sdf-configurable computer system are
studied, and their durational characterigics are
determined. On the basis of these characteristics, the
expressons for evaluating the program execution duration
in the sdf-configurable computer system are obtained. The
directionsfor further works are discussed.

Key words field programmable gate arrays, high
performance computing, reconfigurable architectures,
reconfigurable logic, saf-configurable computer system.

[. INTRODUCTION

Today one of the most promising areas of activity in
the field of high performance computing is creation of
the reconfigurable computer systems (RCCS). RCCSs
compete with other types of high-performance computer
systems due to high speed characteristics of modern
field-programmable gate arrays (FPGAS) — hardware
base of reconfigurable computing environment (RCE) of
RCCS, and due to advances in design technology of
application-specific processors to be synthesized in RCE
of RCCS.

Co-functioning of computer system based on
general-purpose processors with application-specific
processors synthesized in RCE, the structure of which
considers executed algorithms features, allows one to
increase its overall performance by 2-3 orders of
magnitude. Reconfigurability and ability to synthesize an
application-specific processor (ASP) with a new
structure and functionality in RCE allows one to change
the functional commitment of created thereby RCCS
with preserving its high performance at the new class of
problems.

Along with high performance, ensured by the RCCS,
there are also problems associated with their application.
These particularly are significant timing expenses for
task distribution between the processing units, often lack
of IP cores required for implementation in the RCE,
what forces to develop them from scratch, and high
additional requirements to RCCS users qualification, as
they, beside modeling and programming, must perform
system analysis, design ASP' sarchitecture, perform their
synthesis and implementation in RCE.

Deprived of the above mentioned problems are sdf-
configurable computer systems (SCCS), where these
labor-intensive and time-consuming tasks are fully
automated and replaced from the operator to the

40 Viktor Melnyk

computer system. Taking into account the necessity of
further improvement of computer means performance
and extension of reconfigurable devices application in
computer systems, further development in the field of
salf-configurable computer systems is a topical task of
scientific research and engineering.

Il. RELATED WORK

The concept of the sdlf-configurable FPGA-based
computer systems design, the method of information
processing in them, and its structure are proposed in the
paper [1]. The problem of labor intensve and time-
consuming tasks, which is characteristic of RCCS, is
removed in SCCS owing to the change of the
information processing method init.

The software means that should be used in SCCS as
its components are available today. In this regard we
may consider an approach to the development of
computational load balancing systems between general-
purpose computer and hardware accelerator proposed in
[2]. The IP cores generators [3], [4], IP cores libraries
[5], and system level design tools and solutions are
available on the market that could be used for ASP
design on the basis of its algorithm description in the
high-level programming language [6-8].

1. PROBLEM STATEMENT

For the purpose of verification of the SCCS design
concept main principles and in order to prove its
fundamental advantages over the RCCS, the task arises
to investigate organization and architecture of SCCS as
well as compositional and durationa characteristics of
main processes during information processing in SCCS,
and that isagoal of the study carried out in this paper.

V. RECONFGURABLE COMPUTER SYSTEMS,
PROBLEMSAND SOLUTIONS

A. Method of Information
Reconfigurable Computer Sysem

As a starting point of our research, we shall consider
amethod of information processing in the reconfigurable
computer system.

Information processing in RCCS can be represented
as sequential execution of the four stages. At the first
stage the user creates the program P, written in the
high-level programming language, divides this program
into the subprogram P, of computer and the
subprogram Pz of RCE, performs compilation of
subprogram P, generates its executable file obj and

stores it in the computer memory. In order to perform
these actions, the following tools should be used:

1. In order to develop and debug the program
written in the high-level programming language —
integrated programming environments, such as Visua
C + +[9] from Microsoft.

Processing in

2. In order to balance the computational load
between computer and RCE — the modeling tools or
profilers, which provide the datistics of the program,
including time and frequency of execution for its
separate fragments. This enables detection in the
program of the fragments that reguire the largest amount
of computations.

3. In order to compile the subprogram of computer
and create its executable file — an arbitrary compiler
from the language that subprogram is represented in into
the object code that can be directly executed by the
computer.

At the second stage the user develops (or uses a
ready-made solution) an HDL-modd ASPM of ASP,
which is intended to perform the subprogram P.. of
RCE, performs logical synthesis of the ASP and loads
configuration files conf :{confq, o} :1...KFPGA} to RCE,
where K, isthe number of FPGAs, which form RCE,

and, thus, creates an ASP in RCE. In order to perform
these actions, the following tools should be used:

1. In order to design and debug HDL-models of
ASPs — integrated environments for design, modeling
and verification of the projects described in the hardware
description languages, for example, ModeSIM from
Mentor Graphics, Active-HDL from Aldec.

2. In order to perform logical synthesis of ASPs and
RCE configuring — tools for hardware design in FPGA,
for example, ISE, Alliance, Foundation from Xilinx,
Quartus|l, Max + Il from Altera.

At the third stage, after program initialization,
operating system loads the executable file obj of the

computer subprogram to its main memory using the
standard loader.
At the fourth stage RCCS executes program P, . The

computer executes its own subprogram Pg,., RCE
executes its own subprogram P... The computer

interacts with ASP synthesized in RCE under the control
of the operating system. In order to organize this
interaction, the driver of RCE and hardware parts of the
controllers of interfaces, which this interaction is carried
out through, should be used. These tools are provided by
manufacturers together with RCE, for example, by DRC
for their reconfigurable processor units RPU [10], by
Nallatech for their reconfigurable accelerators of H100
series [11], by Cedoxica for their reconfigurable
acceleratorsRCHTX [12].

If the same program must be re-executed, the user
sequentially performsthe third and the fourth stages.

If the user has an executable file and configuration
files, then he/she loads configuration files to RCE and
further sequentially performs the third and the fourth
stages.

An execution time for information processing in
RCCS according to a given program can be represented
by the expression:

Salf-Configurable FPGA-Based Computer Systems: Basics and Proof of Concept 41

GPC
+ toompi le

ASPM conf obj
+U tsynth +U tIoad + tIoad

where: t5., isduration of program distribution by the

_ P obj ASPM
TRCCS_U tdistr + tstore+U tdevelop +

D)

e

user on the computer subprogram P, and RCE

subprogram Puc; tonci. is duration of the computer

subprogram compiling; t3?_ is duration of computer

subprogram executable file storing into its memory;
uliene 1S duration of ASP HDL-model designing;

t ASPM
U “synth

is duration of ASP logical synthesis;, ,to is

load

duration of configuration files loading into RCE; t s

load

duration of the computer subprogram executable files
loading into its main memory; t._ is duraion of

program B, executing in RCCS. Index ,* marks
actions performed directly by the user.

The duration of information processing in the case of
re-execution of the program can be represented by the
expression:

Tées =tom *toe- 2

If the computer subprogram executable file and RCE
configuration files are available, the duration of
information processing can be represented by the
expression:

Tcs=u tomd * tio

load load

loe 3

B. Problems Hindering Efficiency of the Recon-
figurable Computer Systems

By analyzing the above-described method of
information processing in RCCS, one can outline
problems that significantly impede the improvement of
its efficiency, namely:

—in order to execute each new program in RCCS, all
four stages, in the first two of which al actions are
performed by the user, have to be sequentialy
performed, which requires significant amount of time;

— in order to execute the program when executable
file and configuration files are available, the user has to
load configuration files into RCE before the third and the
fourth stages, which also requires significant amount of
time;

— the list of algorithm, that RCCS is effective on, is
narrow, and depends on the functional characteristics of
implemented in RCE ASPs, and provided the problems
to be solved must be changed, at leadt, the steps of the
second stage of the information processing method
described above have to be performed;

— the complexity of information processing is high,
because the user, beside modeling and programming,
should also perform system analysis, design the ASPs
architecture, perform their logica synthesis and
implementation in FPGAS.

C. Ways to Improve Reconfigurable Computer
Systems Efficiency

A key approach to solve the above problems is
automation of all stages of information processing in
RCCS. Let usanayze information processing in RCCS.

The development of the ASP's HDL-model at the
second stage requires from the user a significant amount
of time and knowledge of the system-level design
technology. However, as mentioned above, today the
software tools are available allowing automatic creation
of the ASP' s HDL-models from high-level description of
the algorithm to be implemented in. These software tools
transform the algorithm described in the high-leve
programming language into the HDL-model of ASP. By
linking the operations of ASP's HDL-model generation,
ASP's logical synthesis and configuring of RCE in
automatically executable sequence, the computer system
can load the configuration codes into RCE automatically
without the user’ s intrusion.

It should be noted that the use of generation tools
imposes condition of availability of high-level algorithm
description to be implemented in ASP. The user creates
this description at the first stage when dividing the input
program into two subprograms, and this also requires
from the user a sgnificant amount of time. Automation
of load balancing, beside reduction of time, will allow
one:

1. to link operations of load balancing and
compilation of computer subprogram in one startup
sequence, and as a result, to obtain subprogram
executable file without the user’ sintrusion;

2. tolink operations of load balancing, generation of
ASP HDL-model, ASP's logical synthesis and RCE
configuration in one startup sequence, and as result, to
load configuration codes into RCE automatically without
the user’ sintrusion.

Consequently, automation of steps that are performed
on the first two stages of information processing method
in RCCS, i.e. automatic obtaining of computer
subprogram executable file and automatic creation and
loading of ASP configuration files into RCE for RCE
subprogram execution, will alow one:

1. To reduce the execution time for information
processing;

2. To reduce the complexity of information
processing since the user no longer has to perform the
systems analysis, design ASPs architecture and ASPs
logical synthesis.

However, automation of the two first stages
execution does not solve another problem mentioned
above — namely, the lig of algorithms that RCCS is
effective on remains narrow and depends on the
functional characterigtics of ASPs implemented in RCE.
Their change requires, at least, repesting the second
stage's steps of the above-mentioned method of infor-
mation processing, which should be done by the user.

42 Viktor Melnyk

This problem can be solved by improving the method
of information processing in RCCS in the way that
loading into RCE of obtained after logical synthesis
configuration files is carried out not by the user but by
the operating system, and not at the second stage but at
the third one, in paralld with loading the computer
subprogram executable file into its main memory after
program initialization. This implies that configuration
files should be stored in the computer memory after
logical synthesis. Thus, because the configuration files
are formed automatically in parald with computer
subprogram executable file and stored in its memory, the
entire sequence of actions from the beginning of the load
balancing up to obtaining the executable file and the
configuration files should be treated as a single stage of
program compiling.

Program distribution between
computer and RCE

Computer subprogram compilation

¥

Storage of the executablefileinto
computer's memory

1-st stage

21

Compilation

Storage of the
configuration files
into computer's

memory

]
J

‘ Development of the ASP HDL-model

¥ 22 S

ASPHDL-modd logica synthesis

2-nd stage
| |

Configuration files | cading into the
RCE

A
o

Program initialization ‘] 3

3-rd stage

Loading of the executable file
into computer’s main memory 4(1)

Fig. 1. The diagram showing how to improve information
processing in the RCCS

The proposed improvements of the method of
information processing in RCCS are shown in the
diagram presented in Fig. 1. As a result of those
improvements of the information processing method in
RCCS, and automation of its first two stages, al the
problems pointed above will be solved, because;

1. All actions, starting from the load balancing and
till obtaining the executable file and the configuration
files, are executed automatically at the stage of program
compilation without the user’ sintrusion.

2. In the case of executable file and configuration
files availability, loading these files into the computer
main memory and into RCE is respectively performed by
the operating system after program initialization.
Thereby the task of expanding the list of algorithms that
RCCS are effective on is solved.

3. The requirements to the system user experience
ae dgmplified up to knowing the high-level
programming language.

V. SELF-CONFIGURABLE COMPUTER SY STEM AND
METHOD OF INFORMATION PROCESSINGINIT

We suggest naming the sdf-configurable the
computer system with reconfigurable logic, where
program compilation includes automatically performed
actions of creating configuration, and which acquires
that configuration automatically in the time of program
loading for execution.

In the Self-Configurable Computer System (SCCS),
automated is execution of: 1) computational load
balancing between the genera-purpose computer and
RCE, and 2) creation of ASP's programming model, and
the method of information processing isimproved in the
way that loading into RCE of configuration files
obtained after logical synthesis is carried out not by the
user but by the operating system in parallel with loading
the computer subprogram executable file into its main
memory after the program initialization [1].

From a user’s perspective, SCCS operates similarly
to the traditional general-purpose computer, as the user,
in accordance with the proposed method of information
processing, a) develops a program written in the high-
level language and submits it into SCCS for compilation;
b) initiates a program after compilation; c) loads the data
to be processed and receives the results. Thus, SCCS
reconfigures itself according to the features of the
computational algorithm described by the computer
program, unlike it is done in RCCS, where these actions
are performed by the user.

The diagram of the method of information processing
in SCCS is shown in Fig. 2. This method can be
represented as a sequential execution of three stages.
program compilation, itsloading and execution.

Computational load balancing between
general-purpose processor and RCE
Development of the ASP’s
.E general-purpose processor’s HDL-model
k] subprogram compilation
=
g Logical synthesis of the ASP’s
© ‘ HDL-model
Storage of the object file into the + - -
secondary memory Storage of the FPGA configuration
files into the secondary memory
| Program initialization |

g v !
3
2 | Loading of the object file into the Loading of the configuration files

main memory into the RCE
=
£
- .
3 Program execution
@
2
@

Fig. 2. The diagram of the method of information processing
inthe SCCS

Salf-Configurable FPGA-Based Computer Systems: Basics and Proof of Concept 43

According to the mentioned method, the user creates
a program B, written in the high-level programming
language and submits it into SCCS. During compilation,
SCCS automatically performs the following actions:
divides this program into the computer subprogram P

and the RCE subprogram Py, performs computer

subprogram Py, compilation, generates its executable
file obj, creates ASPs HDL-moded ASPM to perform
RCE subprogram P, performs ASP's logical

synthesis, and stores in the computer memory the
obtained executable file obj and the configuration files

of RCE conf :{confq, qzl...KFPGA}, where K, IS

the number of FPGAs that form RCE.

In order to perform these actions, the SCCS has to
contain the following means:

1. Computational load balancing system for load
balancing between computer and RCE. This system
should automatically select from the program P,

fragments, execution of which in RCE reduces its
execution time, and divide the program B, into the

computer subprogram Py, replacing selected
fragments in it by instructions for interaction with RCE,
and on RCE subprogram Py, formed from the selected

fragments. One implementation of such system is
described in [2]. This system creates the RCE
subprogram in the x86 assembly language, thus it must
be supported by the means for the assembly language
code trandation into the high-level language to be used
in SCCS. Thetooal of thistypeis available on the market,
for example Relogix Assembler-to-C Trandator [13]
from MicroAPL.

2. Generating system for the ASP HDL-modd
creation, which should automatically generate a model
ASPM from the RCE subprogram P, like

Chameleon system from Intron [7], [14], Adgility
Compiler [15] and DK4 Design Suite [16] from
Cedoxica, CoDevel oper from Impulse [17].

3. The tools that are used in RCCS for performing
computer subprogram compilation and creation of its
executable file, and for logical synthesis of the ASPs.

At the stage of program loading after itsinitialization
SCCS loads the executable file obj of the computer

subprogram into its main memory using standard loader
and, at the same time, loads the configuration files

conf = {confq ,q=1.K FPGA} into RCE and thus crestes

an ASP in there. Then, the stage of the program
execution is performed in the same way as in the RCCS.
In order to perform these actions, the same tools can be
used in SCCSasin RCCS.

The dtructure of the sdlf-configurable computer
system that implements the proposed method of
information processing is shown in Fig. 3.

An execution time for information processing
according to a given program P, in SCCS can be
represented as a sum of durations of three stages:
compilation TLe™® | loading Ted% and execution

SCCS
T, , by the following expression:

Teces (P) = Teds = (Pa)+ T8 (Pa)+T2&(PW). @)

n

where:
GPC obj) o
TR)=tE, +mad
el)
T (Ry)= maX(tl?aij tong)! (6)
and TEE(P,) is the same as in RCCS and is equal to
to. . Therefore:

ASPM =’

ASPM conf
generate +t +t %]

synth store

T

_tP
SCCS ~ “distr

+ max(t

+

GPC | tobi {ASPM

ASPM conf
compile store? “generate +t +1)+ (7)

synth store
conf 4 obj P
+ max(tload !tload)+texe

where, in relation to the expression (1), the value t2" is

store
the duration of the configuration files storing in the
computer memory is added.

As can be seen from the expression (4), sgnificant
reduction of the execution time for information
processing in SCCS versus RCCSis ensured by:

— much less duration of automatic execution of four
actions presented in expressions (1) and (2) as compared
to that of their execution by the user, i.e. ti,, <<,tis .

tASPM

ASPM ASPM ASPM
generate <<U tdevelop! t <yt

. ¢ conf conf .
synth it <<Ut

U “synth load load

— pardld execution of several actions namely,
1) sequence of computer subprogram compilation and
storage of executable file into secondary memory with
sequence on the ASP model generation, its synthesis and
storage of binary configuration file into secondary
memory, and 2) loading of executable file into the main
memory and loading of the configuration file into RCE.

In two cases, namely, at the program re-execution, and
in the presence of pre-formed executable file and
configuration files, the duration of information
processing in SCCS will be the same and can be
represented by the expression:

Tées = max(tlf)"afjf o)+ toe - (8)

In comparison with the expression (2) one may note
that in case of repeated execution of the same program,

if & >t the duration of information processing in

load load !
SCCS versus RCCS may increase. Therefore, it isworth
exploring in more details these two processes and, if
necessary, develop the solution that will ensure the least

possible value of t2

load *

44 Viktor Melnyk
Py, (high-level language)
|
Control cl
Self-configurable computer system
Secondary A
oy ;
Memory é’b/ conf SCCS basic software means
” > SCCS compiler
o
E = . Loader Computational load balancing system
g Main obj o s
Bt -t
g Memory ~~ ~~
b a .
8 . enerating system
g GComII)ILe v for for Application-
E H— General- elr:cl)’ie_ssi?sose Specific
S P Purpose subprogram Processor’s
Processor ; .
Operating System compilation HDL model
<}::| creation
j=—=t Reconfigurable mn
> environment <~
. ASP logical synthesis tools
conf Driver of the n
FPGA -t reconfigurable >
environment <}:|] FPGA configuration tools
SCCS other hardware and sofiware means

Fig. 3. The structure of the self-configurable computer system

VI. INVESTIGATION OF DURATION OF COMPUTER
SUBPROGRAM EXECUTABLE FILE LOADING
INTOMAIN MEMORY

When the computer subprogram executable file is
loading the system tasks are being executed by the
operating system as well as the file transfer from the
computer external to main memory. Thelist of actions of
that process depends on the type and features of a
particular operating system, but, in general, is as follows:

determining the location of the program executable
file in the secondary memory;

1) reading the header of the program executable file
out to the buffer of the operating system loader;

2) determining required memory (RAM, stack,
dynamic) resources for program execution and creation
of the main process and environment variables for the
application;

3) code segments of executable file loading into
appropriate addresses in the main memory;

4) data segments of executable file loading and
deployment into appropriate addresses in the main
memory;

5) determining the location of required libraries,
their loading or their physical addresses determination,
and ther placement in the main memory (only for
programs with DLL);

6) the processor registers initialization and the sart
of process of execution.

So, duration of the computer subprogram executable
file loading depends on a type of operating system, type
of executable file and its size Q,;; , and on the computer

technical characteristics, namely: the rate of data reading

from the secondary memory V.2, the rate of data
writing V"™ into the main memory V¥ | throughput

V™ of the interface between the secondary and main
memories. If we denote duration of the system tasks
execution associated with organization of the executable

file loading as tSYS® , then the duration of the

oad ’
computer subprogram executable file loading can be
expressed as.

. . Qusi
o, =tSYS™, + = : 9
load Soad min (Vr:\g V int !Vm’\/fi’lﬂe) ©)

In the most modern computers, the secondary
memory is implemented as a hard drive on the magnetic
disks. The rate of data reading from the secondary

memory V.2 today achieves 210 MB/s. For ingtance,

read

hard drive WD1000DHTZ with capacity 1 TB from
Western Digital got this index equal to 209.14 MB/s,
Barracuda 7200.14 with capacities 1 TB and 2 TB from
Seagate — more then 205 MB/s[18], [19].

Hard drives are attached to computer with standard
peripheral interfaces, the most common among which

today is 3-rd generation SATA. The throughput V'™ of
thisinterface is up to 6 GB/s[20].

However, the performance of the RAM chips main
memory is built on is much higher. One of leading
memory chips manufacturers — Micron Technology —
today offers dynamic memory DDR4 with following
characteristics [21]: capacity 4GB, frequency
933/1067 MHz (clock cycle duration is 1.07/0.938 ns),
throughput — 14928/17064 MBY/s.

Thus, because VB <yt <y MM

read write !

can be transformed as follows:

the expression (9)

Qobj
V EM

read

obj _ obj
tIoad _tSYSOad +

(10)

Salf-Configurable FPGA-Based Computer Systems: Basics and Proof of Concept 45

VII. INVESTIGATION OF DURATION
OF CONFIGURATION FILE LOADING INTO RCE

D. Specific Features of Computer Interaction With
Reconfigurable Environment in the SCCS

When investigating duration t©" of

load the
configuration file loading into the reconfigurable
environment it is necessary to take into account the
following specific features:

according to the method of information processing in
SCCS, the compiled program (executable files and
configuration files) is stored in the computer secondary
memory;

FPGAs are the volatile devices, therefore
configuration codes should be loaded in there each time
they are powered on. In order to automate this task and,
thus, shorten FPGA configuration time, the Flash
memory chip (configuration memory) is attached to
FPGA [22], [23], where the configuration codes are
retained and automatically loaded into FPGA after
turning power on;

since operations of data reading and writing in the
configuration memory cannot coincide in time, prior to
configuration loading into FPGA it should be loaded
from the computer secondary memory to the
configuration memory.

Therefore the configuration files loading into RCE
can be expressed as sequentialy executed actions of
configuration loading into the configuration memory and

then into FPGA, as its duration t2" can be represented
by the following expression:
ten =2 (ConfMem) +t& (FPGA),

load load load

(11)
where t2" (ConfMem) is duration of configuration

load
codes loading into the configuration memory;

t= (FPGA) is duration of configuration codes loading

load

into the FPGA.
Now let us estimate the terms of the expression (11).

E. Duration of Configuration Codes Loading Into
the FPGA

According to the anadysis performed, duration
t=" (FPGA) of configuration codes loading into FPGA

load
depends on the FPGA type, amount of its resources, its
synchronization frequency in configuring mode, and the
width of interface that configuration codes are loaded
through. It can be determined from following expression
[24]:

Qoonf
2 (FPGA) = — (12)
: P AN
where Q. is configuration size (in bits); F." isthe

FPGA synchronization frequency in the configuring
mode; WE** is the width of the FPGA interface, that

conf

configuration codes are |oaded through.

The values of parameters F/2* and WA

conf ‘conf depend
on the configuration loading mode. The list and
characteristics of the modes for different types of FPGAs
may vary. For instance, for the Xilinx Spartan-3 devices
configuring two basic modes are used — a bit-wide one
via the Seria Periphera Interface (SPI) and a byte-wide
one viathe Byte-wide Peripheral Interface (BP!), each of
them having several options for FPGA connection to the
configuration memory [25]. For Xilinx Virtex-6 FPGAs
configuring eight basic modes and five different
interfaces are used. In addition to the bit-wide SPI and
Serid interfaces, 8- and 16-bit BPI and 8-, 16-, and
32-hit SelectMAP interfaces are supported [26].

If RCE contains more then one FPGA chip, then
configuration codes may be loaded sequentially (daisy-
chain mode) from one configuration memory, or in
paradle, what requires separate Flash memory for each
FPGA chip.

Synchronization signal used to synchronize
configuration loading, is generated by the FPGA interna
frequency generator. The frequency of this signal during
configuration loading is specified in the configuration
file with the relevant directives. For ingance, for Xilinx
Spartan-3 devices the frequency is specified with the
ConfigRate directive, and it is equa to 1 (by default), 3,
6, 12, 25, and 50, for some devices even 80 MHz [27].
The alowed frequency is determined by the frequency of
data writing / reading from the configurations memory.

Configuration codes represent the binary “image” of
FPGA that determine the state of all its configurable
components and are usually stored in one file. The

volume Q,,; of the configuration codes depends on the

FPGA resources and does not depend on the resources
that synthesized device occupies in it, like, for instance,
the volume of configuration codes for the synthesis of
inverter and MPEG processor in the same FPGA will be
the same. For the Spartan-3 FPGA family from the
Xilinx volume of configuration ranges from 437,
312 bits for XC3S50A/AN up to 13, 271, 936 bits for
XC3S5000 [25], for Virtex-6 family — from 26, 239,
328 bits for XC6VLX75T up to 184, 823, 072 hits for
XC6VLX760 [26].

F. Duration of Configuration Codes Loading into
the Configuration Memory

The process of configuration files loading into the
configuration memory from the secondary memory
might be represented as a sequence of the following
tasks: 1) determining location of the configuration file in
the secondary memory and its reading out; 2)
configuration file transfer from the secondary memory
into the RCE; 3) configuration file loading into the
configuration memory. These actions might combine in

time, thus, duration t=" (ConfMem) of the configuration

load
file loading into the configuration memory can be
determined from the expression:

46 Viktor Melnyk

Qoonf
(. v, (13
min (VE“" \ALN St >WC“") (13

read ! » 7 conf conf

t2" (ConfMem) =

where For is the frequency of the configuration codes
WCM

conf

loading into the configuration memory; is the

width of the configuration memory interface used for
configuration loading.

As the analysis of the works [22], [23] has shown,
configuration memory is directly attached to FPGA,
while the permissible rate of configuration codes loading
into FPGA is determined according to the frequency of
data writing/reading from the configuration memory.

Thus, we can assumethat FEM = FFPA \WCM =\ FPeA

conf conf 1 conf conf
Analyzing the above characteristics, we may
conclude that V.2 » FSM WM <™ and, thus,

r conf ‘conf
t&" (ConfMem) = (FPGA).

load

G. Ways to Reduce Duration of Configuration
Loading into RCE in SCCS

When analyzing the method of information
processing in RCCS [28], we may note that the use of
attached to FPGA configuration memory there for
configuration codes retaining allows one to shorten and
simplify information processing if computer subprogram
executable file and RCE configuration file are available.
This is achieved because on a second stage of the
method the user should not load configuration files into
RCE as they are loaded automatically just after the
power switch-on in RCCS.

However, since in the SCCS configuration codes
loading is performed after program initialization, and the
compiled program is dready stored in computer’s
memory, the need in configuration memory no longer
exists. Moreover, as the analysis carried out above
shows, the speed of data reading from the external
memory reached in recent years is aimost equal to that
from the configuration memory. Regarding the above
mentioned and taking into account the fact that

Font = Feont W = WirEh, and, thus,
VL » R OWEA <Vi™ | equation (11) for

determining the duration t2 of the configuration codes

loading into the RCE can be transformed into the
following:

conf = , Qoonf N
load min (\/EM E FPGA M/FPGA)

read?’ ' conf conf

(14)

Further duration reduction of configuration loading
into FPGA is possble through architectura
improvements of SCCS, firgly, by introducing into its
structure the special memory for configuration files
storing for all compiled programs, that is optimized for
fast interaction with RCE. In order to reduce the
configuration codes volume, the compression is used e.g.

in RLE, LZSS, Huffman and other methods, which in
some cases provides reduction of duration of
configuration loading by 50-60 % [29], however for
some FPGAs it requires lowering of frequency of the
configuration codes loading, particularly for Spartan-3
and Spartan-3E FPGAs — down to 20 MHz [25].

VIIl. EVALUATION OF PROGRAM LOADING STAGE
DURATIONIN SCCS

For quantitative evaluation of duration of the
computer subprogram executable file loading the
experimental studies on three computing platforms have
been performed:

1) PLATFORM L

processor: AMD Athlon 11 X4 645, MM X, 3DNow
(4 CPUs), 3.1 GHz; main memory: 3326 MB; data read
speed from the hard drive: 100 MB/s; operating system:
Windows XP Professional (5.1, Build 2600) Service
Pack 3.

2) PLATFORM 2:

processor: Mobile AMD Sempron 3400+, MMX,
3DNow, 1.8 GHz; main memory: 2032 MB; data read soeed
from the hard drive: 50 MB/s, operating system: Windows
XP Professiond (5.1, Build 2600) Service Pack 3.

3) PLATFORM 3:

processor: Intel Celeron 2.53 GHz; main memory:
760 MB; data read speed from the hard drive: 80 MB/s;
operating system: Windows XP Professional (5.1, Build
2600) Service Pack 3.

For each of these platforms the duration of data
reading from the externa memory was calculated. The
results of experimental studies and cal culations are shown
in charts (Fig. 4), where the solid line labds the plats of
executable files loading duration, and dotted line — those
of reading duration from the external memory.

The above estimations have been performed with the
use of AppTime (free software tool) from
PassMark Software [30]. As seen from the plots, the
duration of loading of the executable files that have size
from hundreds of KB up to tens of MB (the vast majority
of software executable files have that size) ranges from a
few to several hundred milliseconds, and a part of this
time is taken by the system tasks associated with their
loading.

On the basis of the results of the above analysis the
caculations of duration of the configuration codes
loading to the FPGA have been performed. The results
of these calculations are shown in the plots (Fig. 5). As
seen from the plots, for modern FPGAs from leading
manufacturer the value of duration of the configuration
code loading lies in the range from a few to severa
hundred milliseconds.

As a result of our studies we may conclude that the
values of duration of computer subprogram executable
files loading and those of configuration files loading are

Salf-Configurable FPGA-Based Computer Systems: Basics and Proof of Concept 47

of the same order, i.e. t&7 »t2 | and the difference

between these values does not fundamentally affect the
SCCS performance. This confirms the effectiveness of
the principles underlying the method of information
processing in SCCS, since the FPGA configuring in
SCCS does not dow down program loading stage as
compared to the duration of this stagein RCCS.

oot
- /
g 00 / -
200 e —
100 /_.- —
— KB
0 5000 10000 15000 20000 25000 30000
ms
600 /
500 -
—
400 / e s
/ -
-
b 300 / —
200 R et
100 //--’f
s KB
0 5000 10000 15000 20000 25000 30000
ms
600
500 d
At //
¢ 0 A
=
200 ==
100 scalalil
—— KB

0 5000 15000 20000 25000 30000

Fig. 4. Dependences of the computer subprogram executable
filesloading duration on their size for platforms 1 (a), 2 (b)
and 3 (¢

1000} S

800 e

600 =

400 =

200 I R e

P KB
o 5000 10000 15000 20000 25000
s00 ms
400 il
=
r".'-.-
300 e
b T
s
200 e e
e ——
e —— ___,__,__-—-—'—"_'
100 — ——
e e KB
0 5000 10000 15000 20000 25000
25045
-
200 —
-".F.-
150 S—
c o
100 S ——
—".J ——— -
- e —
50 '_d' o ——
P KB
0 5000 10000 15000 20000 25000

Fig. 5. Dependences of the configuration filesloading duration
on their size for interfaces with the widths of 8 (a), 16 (b)
and 32 (c) bits

IX. INVESTIGATION OF MAIN PROCESSES

DURATION ON THE PROGRAM EXECUTION STAGE

According to the method of information processing
in SCCS [1], the stage of program execution in SCCSis
the same as in RCCS. Denoting the duration of the
computer subprogram P,. execution by the general-
purpose processor GPP as Topp (Psec), and duration of
given by subprogram Py algorithm execution by the
application-specific processor ASP as Ty (Pace), We

can determine the duration TEE,(P,) of the program R,

execution stage from the following expression:
TSCE?EIES(RH) = Tape (PGPC)+ Ths (PRC) -

_ T par
TGPP, ASP + ttrdata ’

(15)
where ttr,,, isthe duration of the data transfer between
the GPP and ASP processors during program P

execution; Tds e IS the time during which the GPP
and ASP processors perform calculationsin parallél.
Analyzing expression (15), one may conclude that in
order to get as least as possible value of duration
TES(R,) of the program P, execution in SCCS the
following conditions mugt be fulfilled:
: Teee (PGPC)+TA5P (PRCE) = T® min;
: Tore (Pn)
% min(TGPP(PGPC)v Tre (PRCE))' TGpPaFr’,As: =dT ® min; (16)
: ttr g, ® min.
i
where TGPP(F{H) is the duration of the program B,
execution by a general -purpose processor.
Let us analyze these conditions.
In order to ensure the least possible value of the
refation j T the subprogram Py should contain such

parts of the program P that accommodate most

computational load (are characterized by the highest
computational complexity) and execution of which
requiresthe greatest amount of GPP resources.

The value of difference dT depends primarily on the
gpatial characterigtics of the agorithm described by the
program P. (the presence of the parts in it that can be
executed in parallel). In order to ensure as least as
possible value of the difference dT these characteristics
must be taken into account during the program P,
distribution to the subprograms Pyp. and Pa .

The duration of the data transfer between the GPP
and ASP processors depends on the amount N, of
the data to be transfered and on the interface
characterigtics: its throughput V'™, delay 1,, and
reactiontime I, :

48 Viktor Melnyk

17 = F (N V™, Ty 110 17)
moreover, time delays 1, and |, occur each time of

transfer initialization. Therefore, the data exchange
between the subprograms Py, and Py should be

organized in the way that ensures the least possible
amounts of the interaction sessions and the data to be
transferred.

The fulfillment of the above conditionsis realized in
SCCS during the distribution of the computational load
between the computer and the reconfigurable
environment, and should be taken into account when
developing the conceptual foundations of the
computational load balancing system.

As can aso be noted form the expresson (15), the

data?

TEXE

duration SJCCS(F{n) of the program P, execution stagein

SCCS depends on the value TASP(PRCE), and, hence, on

the performance of the application-specific processor
ASP . Therefore, to implement this processor, 1) appro-
priate architectural approaches should be taken — hardware
orientation and paralld data processng, and 2) maximum
efficiency of the FPGA resources usage should be
provided. These taks are solved in SCCS during
generation of the ASPs modds, and should be taken into
account when deveoping the conceptua foundations of
generating system for ASP HDL-mode crestion.

X. FURTHER WORK DIRECTIONS
ON SCCSCREATION

The organization, architecture and characteristics of
SCCS were shown above in this paper. Therefore, we
can highlight a list of further works on the SCCS
creation. The following tasks should be included
primarily into thislist:

— selection of the generation system for creating the
ASP' sHDL-modd and adapting it for usein SCCS;

— sdection of the computational load balancing
system and its adaptation for usein SCCS;

— development of the interaction models of SCCS
software means according to the proposed method of
information processing;

— trial operation of SCCS and itstesting.

Implementation of these tasks will alow one to use
al the potentia provided by the sdf-configuration
property and will ensure for SCCS one of the leading
places among the most promising means of high-
performance computing.

X1. CONCLUSIONS
In this paper, organization, architecture, and
characteristics of the sdf-configurable FPGA-based
computer systems are shown. As the starting point of our
research we took the method of information processing

in RCCS and the rules of application of the computer
software and hardware means necessary for its
implementation.

It has been identified that the main problems
hindering the efficiency of RCCS are related to the fact
that in order to implement each new program the four
stages of information processing in it must be
sequentially executed, two first of which being
performed by the user, first of al, the computational 1oad
balancing and the design of ASPsthat require significant
amount of time,

The analysis performed has shown that the identified
problems can be solved by automatic load balancing
between the computer and RCE, by automatic synthesis
of ASPs HDL-models, and by improving the method of
information processing in such a way that loading the
configuration files into RCE is carried out by the
operating system instead of the user, and this is done
simultaneoudly with the computer executable file loading
into its main memory.

The above improvements have been taken as a basis
of a new type of high-performance computer systems
with reconfigurable logic named self-configurable ones
and a new method of information processing in these
systems. The structure of SCCS and the expressions for
estimating the duration of information processing in it
are shown. It has also been shown that durations of two
concurrent processes, namey, the configuration file
loading and the computer subprogram executable file
loading, are critical in SCCS. Therefore, a detailed
exploration of these two processes has been carried out
in order to ensure SCCS effectiveness.

The main processes on the stage of program loading
have been identified and their durational characteristics
have been investigated. The characterigics of modern
computer means have been analyzed, and cal cul ations of
duration of the computer subprogram executable file
loading to its main memory, and configuration codes
loading to the reconfigurable environment, have been
performed. On the basis of the above calculations, as
well as according to the results of experimental studies
on a number of computing platforms, it has also been
determined that durations of these processes are of the
same order and the difference of these values does not
fundamentally affect the performance of SCCS. This,
hence, confirms the effectiveness of the principles
underlying the method of information processing in
SCCS, since the FPGA configuring in SCCS does not
dow down the program loading stage as compared to the
duration of this stage in RCCS. It has also been
determined that in SCCS, unlike RCCS, there is no need
for the configuration memory, and the removal of this
memory makes it possible to reduce the time of
configuration loading to the FPGA.

Salf-Configurable FPGA-Based Computer Systems: Basics and Proof of Concept 49

Themain processes on the stage of program execution
have been identified and their durational characterigtics
have been invedtigated. The conditions of shortening the
program execution stage in SCCS have been determined.
These conditions can be fulfilled in SCCS at the time of
distribution of computational 1oad between the computer
and the reconfigurable environment, and at the time of
generation of the ASP's HDL-modd, and should be taken
into account when devel oping the conceptua foundations
of the SCCS basic components — the computational oad
balancing system and generation system for creation of
the ASP sHDL-modds.

The directions of further works on the SCCS
creation, implementation of which will allow one to use
al the potential provided by the property of sdf-
configuration and ensure for SCCS one of the leading
places among the most promising means of high-
performance computing, have been discussed.

REFERENCES

[1] Melnyk, A., Menyk, V. “Sdf-Configurable FPGA-Based
Computer Systems’ Advances in Electricall and Computer
Engineering, vol. 13, no. 2, pp. 3338, 2013,
doi:10.4316/AECE.2013.02005. [Online]. Available: http://www.
aece.ro/abstractplus.php?year=2013& number=2& article=5

[2] Melnyk, V., Stepanov, V., Sargrech, Z., “System of load
balancing between host computer and reconfigurable
accelerator”, Proceedings “Computer syssems and components’
of Tchernivts National University. — Tchernivts, 2012. — T. 3.
Ed. 1. pp. 6-16.

[3] A Proven EDA Solutions Provider makes al the difference.
[Onling]. Available: http://www.al dec.com/en.

[4] Xilinx Core Generator. Xilinx Inc. [Onling]. Available:
http://www.xilinx.com/ise/products/coregen_overview.pdf -
2005.

[5] Melnyk, A, Menyk, V. “Organization of libraries of sandardized
and cusom |IP Cores for high-performance hardware
accelerators’, Proceedings of IV-th al-Ukrainian conference
“Computer Technologies: Science and Education”, Ukraine,
Lutsk, 9-11 October 2009. — P. 113-117.

[6] Genest, G. “Programming an FPGA-based Super Computer
Using a C-to-VHDL Compiler: DIME-C”, Adaptive Hardware
and Systems, 2007. AHS 2007. Second NASA/ESA Conference,
5-8 Aug. 2007. — P. 280-286.

[7] Chameleon — the System-Level Design Solution. [Onlin€].
Available: http://intron-innovations.com/?p=dd_chame.

[8] ANSI-C to VHDL Compiler. [Onlingl. Available:
http://www.nallatech.com/FPGA-Devel opment-

Tool gdimetalk.html.

[9] Ivor Horton. Beginning Visual C++ 2005. — John Wiley & Sons,
2005. — 1224 p.

[10] DRC Computer Corporation. RPU100-L60 DRC Reconfigurable
Processor Unit. A breakthrough in coprocessor technology.
[Onling]. Available: http://www.drccomputer.com/
pdfsyDRC_RPU100_datasheet.pdf.

[11] H100 Series FPGA Application Accelerators. Verson 1.9.
September 2008. [Onling]. Available: http://www.skyblue.
de/nallatech/5595.pdf.

[12] Cedoxica Ltd. RCHTX-XV4 High Performance Computing
(HPC) Application Acceleration Board Datasheet. Verson 1.0.
2006. [Onling]. Available: http://www.hypertrangport.org/
docs/tech/rchtx_datasheet_screen.pdf.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Relogix Assembler-to-C ~ trandator. [Onling]. Available:
http://www.microapl.co.uk/asm2c/.

Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. “Chameleon —
sysem for specialized processors high-level synthess’,
Scientific-technical magazine of National Aerospace University
“KhAl", Kharkiv, 2009. No. 5, pp. 189-195.

Handel-C Language Reference Manual For DK Version 4.
Celoxica Limited, 2005. — 348p.

Agility Compiler for SystemC. Electronic System Level
Behavioral Design & Synthess Datasheet. 2005. [Onling].
Available:
http://www.europractice.rl.ac.uk/vendors/agility_compiler.pdf
C-to-FPGA Tools form Impulse Acceerated Technologies.
Impulse CoDeveloper C-to-FPGA Tools. [Online]. Available:
http://www.i mpul seaccel erated.com/products_universal.htm
StorageReview.com — Storage Reviews. [Onling]. Available:
http://www.storagereview.com.

Read Throughput Maximum: h2benchw 3.16. [Onling].
Available: http://www.tomshar dware.com/charts’hdd-
charts-2012/-02-Read-Throughput-Maximum-h2benchw-3.16,
2900.html.

Whitepaper. New SATA Spec Will Double Data Transfer Rates
to 6 Ghit/s SATA-IO. May 27, 2009. [Online]. Available:
http://www.sata-i 0.org/documents/SAT A-6Gbs-Fast-Just-Got-
Faster.pdf.

DDR4 SDRAM - Micron Technology, Inc. DDR4—Packing
Power and Performance into a New Generation. [Onling].
Available: http://www.micron.com/products/dram/ddr4-
sdram#full Part& 236=0.

Platform Flash XL High-Density Configuration and Storage
Device. Product Specification. DS617 (v3.0.1) January 07,
2010, — 88p. [Onling]. Available: http://www.xilinx.com/support/
documentation/data_sheets/ds617.pdf.

Platform Flash XL Configuration and Storage Device User
Guide. UG438 (v2.0) December 14, 2009, — 74 p. [Onling].
Available http://www.xilinx.com/support/documentation/
user_guides'ug438.pdf.

Eric Crabill. Powering and Configuring Spartan-3 Generation
FPGAs in Compliant PCl Applications. Application Note:
Spartan-3 Generation Family. XAPP457 (v1.0) June 8, 2007,

Xilinx, Inc. - 9 p. [Online]. Available:
http://www.xilinx.com/support/documentati on/application_notes/
xapp457.pdf.

Spartan-3 Generation Configuration User Guide. Extended
Spartan-3A, Spartan-3E, and Spartan-3 FPGA Families. UG332
(v1.6), October 26, 2009, Xilinx, Inc. — 352 p. [Onling].
Available http://www.xilinx.com/support/documentation/
user_guides/ug332.pdf.

Virtex-6 FPGA Configuration User Guide // UG360 (v3.5)
September 11, 2012, Xilinx, Inc. — 182 p. [Online]. Available:
http://www.xilinx.com/support/documentation/user_guides'ug
360.pdf.

Spartan-3E FPGA Family Data Sheet. Product Specification.
DS312 October 29, 2012, Xilinx, Inc. — 182 p. [Onling].
Available http://www.xilinx.com/support/documentation/
data_sheets/ds312.pdf.

Melnyk, V. “Principles of congruction and operation of
reconfigurable computer systems’, Scientific journal “Technical
Sciences’ of Khmelnytskyj National University, Ukraine. —
No. 6. —2012. — P. 212-217.

Koch, D., Beckhoff, C., and Teich, J. “Bitstream decompression
for high speed FPGA configuration from dow memories’,
Proceedings of International Conference on Field-Programmable
Technology (ICFPT’07). |EEE, 2007. — P. 161-168.

PassMark AppTimer — Measure application startup time.
[Onling]. Available: http://www.passmark.com/
products/apptimer.htm.

50

Viktor Melnyk

Viktor Melnyk is a professor of
the Department of Information
Technologies Security in the Lviv
Polytechnic Nationa University,
Ukraine. He was awarded the
academic degrees of philosophy
doctor in 2004, and doctor of
technical sciences in 2013 in Lviv
Polytechnic National University. He

has scientific, academic and hands-on experience in the field of
computers and computer systems research and design, proven
contribution into IP Cores design methodology and high-
performance reconfigurable computer systems design
methodology. He is experienced in computer data protection,
including cryptographic agorithms, cryptographic processors
design and implementation, wireless sensor network security.
Mr. Menyk is an author of more than 70 scientific papers,
patents and monographs.

