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A numerical-analytical method of determining the heat field in a finite solid with taking
into account the dependence of the coefficients of heat conductivity and of heat release
on the temperature and the intensity of internal heat sources is suggested. The effec-
tiveness of the combination of indirect methods of boundary and near-boundary elements
with Kirchhoff transformation for partial linearization of nonlinear 3D problems of heat
conduction, by which the process is modelled, is substantiated.
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1. Introduction

Modeling and optimization of thermal processes are essential in a variety of industries and technology
particularly in instrument-making and mechanical engineering, in the design of microelectronic devices,
cover constructions and fireproof equipment. As a rule thermal properties of materials depend on
temperature under the influence internal heat sources and external thermal factors.

The linear mathematical models based on the assumption of piecewise constant thermal character-
istics of materials which depend on the coordinates are not always adequately describing the actual
processes. The more reliable models that take into account the effect of temperature on the coeffi-
cients of thermal diffusivity of material components, which leads to nonlinear problems. Mainly for
their solution, we use analytical methods and numerical methods tend to canonical form [1–5]. One
approach we use in finding solutions to these problems is the selection operator that describes the
effect of nonlinearity. We apply to it the iterative method using sampling area nonlinearity [6, 7].
Another way, more effective way of solving the stationary and non-stationary problems in the case of
simple non-linearity (when the thermal diffusivity was temperature dependent and can be considered
sustainable) is to use Kirchhoff transformation that reduces non-linear to linear equations [1–4, 8, 9].

2. The partial linearization of the problem using Kirchhoff transformation

We consider a plate homogeneous region Ω ⊂ R
3 with a simple closed edge Γ. The thermal conductivity

λ(θ) of material object and a heat transfer coefficient with its limits α(θ) are continuous functions of
the unknown temperature θ(x) [1, 2]:

λ(θ) = λ0
(
1 + λ0(θ)S+(θ − θλ)χθ

)
, α(θ) = α0

(
1 + α0(θ)S+(θ − θλ)χθ

)
, (1)
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where χθ is a characteristic function of region Ωθ, θ > min(θλ, θα), S+(z) = 1 (z > 0), S+(z) = 0
(z 6 0), x = (x1, x2, x3). The behavior of the temperature field, the heat flow and convective heat
exchange with the environment, the temperature of which is θc(x) are known on the part ∂Ωs ⊂ Γ (s =

= 1, 2, 3),
3
∪
s=1

∂Ωs = Γ. Inside area Ω heat source fo intensity ψ(x) exists.

To determine the stationary temperature field in Ω we have a non-linear equation [2]

3∑

j=1

∂

∂xj

(
λ(θ)

∂θ(x)

∂xj

)
= −ψ(x)χψ , x ∈ Ω ⊂ R

3, (2)

boundary conditions of the first, second and third kind.

θ(x) = θΓ(x), x ∈ ∂Ω1, −λ(θ)
∂θ(x)

∂n(x)
= qΓ(x), x ∈ ∂Ω2,

α(θ)θ(x)− λ(θ)
∂θ(x)

∂n(x)
= α(θ)θc(x), x ∈ ∂Ω3. (3)

n(x) = (n1(x), n2(x), n3(x)) is outdoor uniquely defined normal to Γ, ψ(x) is intensity sources in
Ωψ ⊂ Ω; χψ is the area characteristic function Ωψ, χψ = 1, x ∈ χψ, χψ = 0, x 6∈ χψ.

A well-known direct and inverse Kirchhoff transformation takes place:

ϑ(x) = K
(
θ(m)(x)

)
=

1

λ0

θ(x)∫

θ(0)

λ(ζ)dζ,

and inverse Kirchhoff transformation takes place

K−1(ϑ(x)) = θ(x) (4)

to find ϑ(x) we obtain the partially linearized problem:

∆ϑ(x) = −ψ(x)χψ , x ∈ Ω, (5)

ϑ(x) = K(θΓ(x)), x ∈ ∂Ω1, −
∂ϑ(x)

∂n(x)
= qΓ(x), x ∈ ∂Ω2,

−
∂ϑ(x)

∂n(x)
+ α

(
K−1(ϑ)

)
K−1(ϑ) = α

(
K−1(ϑ)

)
θc(x), x ∈ ∂Ω3, (6)

where ∆ =
3∑
i=1

∂2

∂x2i
is the Laplace operator, θ(0) is the characteristic temperature.

We see that the Kirchhoff transformation linearizes the original equation (2) and boundary con-
ditions of the second kind (3), boundary conditions of the first kind are linear, and the boundary
condition of the third kind (3) remain nonlinear.

3. Construction of integral solutions representations of the linear equation and discrete-
continuous model

We use indirect boundary and near-boundary elements methods [4, 6]. We enter at the border Γ of
area Ω and in external to it near-boundary zone G = B \Ω of thickness h (Ω ⊂ B ⊂ R

3, Γ ∩ ∂B = ⊘,
∂B is limit of area B) fictitious heat source unknown intensity ϕ(Γ)(x), ϕ(G)(x).
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We describe an unknown function by equation

∆ϑ(γ)(x) = −ϕ(γ)(x)χγ − ψ(x), x ∈ R
3, γ ∈ {Γ, G}, (7)

where χγ(x) is characteristic function γ, that is χγ(x) = 1 (x ∈ γ), χγ(x) = 0 (x 6∈ γ).
Then Kirchhoff integral image variable as the solution of equations (7) and its normal derivative

are represented as following:

ϑ(γ)(x) = F γ(x,U) + Fψ(x,U),
∂ϑ(γ)(x)

∂n(x)
= F γ(x,Q), (8)

where F γ(x,Φ) =

∫

γ

Φ(x, ξ)ϕ(γ)(ξ)dγ(ξ), Fψ(x,Φ) =

∫

Ωψ

Φ(x, ξ)ψ(ξ)dΩψ(ξ), U(x, ξ) is fundamental

solution of the Laplace operator, which exactly satisfies the equation (5) in Ω, ξ = (ξ1, ξ2, ξ3) ∈ R
3,

Q(x, ξ) = −

3∑

j=1

Qj(x, ξ)nj(x), Qj(x, ξ) =
∂U(x, ξ)

∂xj
.

We reinforce x in (8) from the middle Ω to Γ to meet the conditions (3), obtain boundary integral
equation (BIE), which links unknown ϕ(γ)(ξ) with functions specified on Γ:

F γ(x,U) = K(θΓ(x))− Fψ(x,U), x ∈ ∂Ω1,

F γ(x,Q) = qΓ(x)− Fψ(x,Q), x ∈ ∂Ω2, (9)

α(K−1(F γ(x,U) + Fψ(x,U))K−1(F γ(x,U) + Fψ(x,U)) + F γ(x,Q)) =

= α(K−1(F γ(x,U) + Fψ(x,U))θc(x)− Fψ(x,Q)), x ∈ ∂Ω3,

To find the solutions of the system (9) we implemented spatial discretization. We discretize the
region G and limit Γ on near-boundary elements Gν and boundary elements Γν (ν = 1, . . . , V ) and we

approximate unknown functions ϕ(G)(ξ), ϕ(Γ)(ξ) by constants dGν , d
Γ
ν . However mesGν = l,

V
∪
ν=1

Gν =

= G,
V1
∪
ν=1

(∂Gν∩Γ) = ∂Ω1,
V2
∪

ν=V1+1
(∂Gν∩Γ) = ∂Ω2,

V
∪

ν=V2+1
(∂Gν∩Γ) = ∂Ω3, Gν∩Gω = ⊘, Γkν∩Γ

k
ω = ⊘,

ν 6= ω,
V
∪
ν=1

Γν = Γ,
V1
∪
ν=1

Γν = ∂Ω1,
V2
∪

ν=V1+1
Γν = ∂Ω2,

V1
∪

ν=V2+1
Γν = ∂Ω3. It is clear that each boundary

element should fully belong to one of the sites ∂Ωs (s = 1, 2, 3), which are sampled according to
elements V1, K2, K3, however elements numbering began with the first section and continues to the
next V2 = V1 +K2, V = V1 +K2 +K3.

After spatial discretization we obtain a system of nonlinear algebraic equations (SNLAE).

f(d) = 0, d = (dγ1 , . . . , d
γ
V ), f(d) = (f1(d), f2(d), . . . , fV (d))

T , (10)

fw(d) =

V∑

ν=1

Aγν(x
w, U)dγv −K(θΓ(x

ω)) + Fψ(x
ω, U), xω ∈ ∂Ω1, ω = 1, . . . , V1,

fw(d) =
V∑

ν=1

Aγν(x
w, Q)dγv − qΓ(x

ω) + Fψ(x
ω, Q), xω ∈ ∂Ω2, ω = V1 + 1, . . . , V2,

fw(d) = α

(
K
( V∑

ν=1

Aγν(x
w, U)dγv+Fψ(x

ω, U)
)
K−1

( V∑

ν=1

Aγν(x
w, U)dγv + Fψ(x

ω, U)
)
+

V∑

ν=1

Aγν(x
w, Q)dγv

)
−

− α

(
K−1

( V∑

ν=1

Aγν(x
w, U)dγv + Fψ(x

ω, U)
)
θc(x

ω) + Fψ(x
ω, Q)

)
, xω ∈ ∂Ω3, ω = V2 + 1, . . . , V,
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xω ∈ Γω, (ω = 1, . . . , V ) is a point of collocation, selected as the “center of mass” of boundary element.
For solving SNLAE (10) we use a modified Newton method [7], the essence of this modification is that
at every step of the method is not necessary to calculate the matrix inverse to the Jacobi matrix, in
the corresponding point. Instead we use one and the same inverse matrix calculated at the start point.
As an initial approximation we solve the problem with boundary conditions of the first kind, we get
the SLAE on the first step [5]. The SLAE we solved using Gauss-Newton method.

We obtained solutions of SNLAE d(γK), and we using it of the Kirchhoff variable and derivative by
normal:

ϑ(γ)(x) =
V∑

ν=1

Aγν(x,U)dγKν + Fψ(x,U), −
∂ϑ(γ)(x)

∂n(x)
=

V∑

ν=1

Aγν(x,Q)dγKν + Fψ(x,Q), (11)

where Aγν(x,Φ) =

∫

γν

Φ(x, ξ)dγν(ξ). The integrals AGν (x,U), AGν (x,Q), AΓ
ν (x,U), at ξ = x containing,

and Aγν(x,Q) we calculated in Cauchy terms.
In next step, we use the inverse Kirchhoff transformation (4) and (11) to find unknown temperature

and heat flux by the formulas:

θ(γ)(x) = K−1
(
ϑ(γ)(x)

)
, −λ

(
θ(γ)

)∂θ(γ)(x)
∂n(x)

= −
∂ϑ(γ)(x)

∂n(x)
.

4. Numerical experiments

For numerical experiments we reviewed an isotropic homogeneous parallelepiped in Cartesian coordi-
nates x1, x2, x3 which occupies an area

Ω = {(x1, x2, x3) : a1 < x1 < a2, b1 < x2 < b2, c1 < x3 < c2}

with limit Γ =
6
∪
j=1

Γ(j), where Γ(1), Γ(2) is a left border, right border, Γ(3), Γ(4) is a bottom border, top

border, Γ(5), Γ(6) is a back border and front border of parallelepiped, where a1 = −1, a2 = 1, b1 = −1,
b2 = 1, c1 = −1, c2 = 1, h = 0.01.

We used the indirect method of near-boundary elements for the distribution of the thermal field

with an exponential dependence a thermal conductivity from temperature λ(θ) = λ0 exp

(
βλ

θ−θ
(0)
exp

θ
(0)
exp

)
,

at λ0 = 1, βλ = 0.01, θ
(0)
exp = 100 for the problem of the third kind (3)

θΓ(x) = 100 + x3, θc(x) = x2/4 + 10.75, x3 = 1, θc(x) = x2/4 + 8.75, x3 = −1, (12)

α(θ) = 1, x ∈ Γ(i), i = 1, 6, (13)

without inner sources. The results are shown in fig. 1.
We assessed the effect power of inner sources. In the first we evaluated the effect of inner sources

in the plates form

Ωψ2 =
{
(x1, x2, x3) : − d 6 x1 6 d, x2 = 0.25, −d 6 x3 6 d

}

with intensity

ψ̃(x) = ψg

(
1 + cos

πx1
d

)(
1 + cos

πx2
d

)
,

where d = 0.5. The results are shown in fig. 2.
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(a) (b)

Fig. 1. The distribution of the temperature field inside the object on the plane x2 = 0.5 (a) and x2 = −0.5 (b)
for V = 36 with an exponential dependence without inner sources.

(a) (b)

Fig. 2. The distribution of the temperature field inside the object on the plane x2 = 0.5 for V = 36 with an
exponential dependence for a given inner heat source in the plates form with heating (ψg = 50) (a) and with
cooling (ψg = −50) (b).

(a) (b)

Fig. 3. The distribution of the temperature field inside the object on the plane x2 = 0.5 for V = 36 with an
exponential dependence for a given inner heat source in the parallelepiped form with heating (ψg = 50) (a) and
with cooling (ψg = −50) (b).
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In the second we evaluated the effect of inner sources in the 3D form

Ωψ3 =
{
(x1, x2, x3) : − d1 6 x1 6 d1, −d2 6 x2 6 d2, −d3 6 x3 6 d3

}

with intensity

ψ̃(x) = ψg

(
1 + cos

πx1
d1

)(
1 + cos

πx2
d2

)(
1 + cos

πx3
d3

)
,

where d1 = 0.25, d2 = d3 = 0.75. The results are shown in fig. 3.
During numerous experiments, when we took solution of the linearized problem for the initial

approximation, then we have not always received convergent iterative process. So we chose for the
initial approximation the solution of linearized problem with boundary conditions of the first kind.
The error e = 0.001 was achieved for the 8− 10 steps. All numerical results we have got from using an
indirect near-boundary elements method (INBEM), because during the Kirchhoff conversion we got
higher accuracy than indirect boundary element method (IBEM). As you can see, when the internal
heating source (ψg = 50) the temperature increases in parallelepiped, and on cooling source (ψg = −50)
the temperature decreases.

5. Conclusions

We have developed numerical and analytical approach for mathematical modeling of three-dimensional
stationary thermal field, which is based on INBEM, Kirchhoff transformation and a modified Newton’s
method. This approach makes it possible to determine the temperature and heat flow in the heat-
sensitive environment considering its thermal characteristics depending on the unknown temperature.
We confirmed the efficiency of INBEM for solving nonlinear system of boundary integral equations,
which describe the heat conduction process, and allows us to weaken the singularity of the equation
compared to IBEM. Also INBEM simplifies the construction of discrete-continuum models, and sig-
nificantly improves accuracy when calculating the desired values near the body and on the verge of
body. In INBEM all integrals are considered in the Riemann terms (in IBEM calculation of the heat
flux requires the finding integrals in the Cauchy terms). This provided diagonal advantage of SNLAE
elements. The near-boundary region with additional parameter smoothed effect of inner sources, and,
therefore achieved higher than IBEM accuracy using the same number of boundary elements and the
same degree of approximation of unknown intensity. Difference for INBEM method for two and three
dimensional heat conduction problems are mainly seen in form of near-boundary elements and funda-
mental solution of the Laplace equation. Modular construction principle unified software development
part and in the future will allow expand the range of research studies on piecewise homogeneous bodies.
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Урахування нелiнiйної поведiнки матерiалу середовища та
об’ємних внутрiшнiх джерел при математичному моделюваннi

процесу теплопровiдностi

ЖуравчакЛ.М.1, КрукО.С.2

1Карпатське вiддiлення Iнституту геофiзики iм.С. I. Субботiна НАН України

вул.Наукова, 3-Б, 79060, Львiв, Україна
2Нацiональний унiверситет «Львiвська полiтехнiка»

вул.С. Бандери, 12, 79013, Львiв, Україна

Запропоновано чисельно-аналiтичну методику знаходження теплового поля в обме-
женому тiлi з урахуванням залежностi коефiцiєнтiв теплопровiдностi та тепловiддачi
вiд температури та iнтенсивностi внутрiшнiх джерел. Обґрунтовано ефективнiсть
поєднання непрямих методiв граничних та приграничних елементiв з перетворенням
Кiрхгофа для часткової лiнеаризацiї нелiнiйних тривимiрних задач теплопровiднос-
тi, якими змодельовано вказаний процес. З використанням iнтегральних зображень
для змiнної Кiрхгофа побудовано дискретно-континуальну модель задачi з мiшаними
граничними умовами першого, другого та третього роду. Здiйснено низку обчислю-
вальних експериментiв для експоненцiйної залежностi коефiцiєнта теплопровiдностi
вiд температури, оцiнено вплив плоских та об’ємних джерел на розподiл температур-
ного поля в паралелепiпедi.

Ключовi слова: матерiали iз залежними вiд температури характеристиками,

теплове поле, непрямий метод граничних елементiв, непрямий метод приграни-

чних елементiв, перетворення Кiрхгофа, внутрiшнi джерела
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