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A numerical-analytical method of determining the heat field in a finite solid with taking
into account the dependence of the coefficients of heat conductivity and of heat release
on the temperature and the intensity of internal heat sources is suggested. The effec-
tiveness of the combination of indirect methods of boundary and near-boundary elements
with Kirchhoff transformation for partial linearization of nonlinear 3D problems of heat
conduction, by which the process is modelled, is substantiated.
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1. Introduction

Modeling and optimization of thermal processes are essential in a variety of industries and technology
particularly in instrument-making and mechanical engineering, in the design of microelectronic devices,
cover constructions and fireproof equipment. As a rule thermal properties of materials depend on
temperature under the influence internal heat sources and external thermal factors.

The linear mathematical models based on the assumption of piecewise constant thermal character-
istics of materials which depend on the coordinates are not always adequately describing the actual
processes. The more reliable models that take into account the effect of temperature on the coeffi-
cients of thermal diffusivity of material components, which leads to nonlinear problems. Mainly for
their solution, we use analytical methods and numerical methods tend to canonical form [1-5]. One
approach we use in finding solutions to these problems is the selection operator that describes the
effect of nonlinearity. We apply to it the iterative method using sampling area nonlinearity [6, 7].
Another way, more effective way of solving the stationary and non-stationary problems in the case of
simple non-linearity (when the thermal diffusivity was temperature dependent and can be considered
sustainable) is to use Kirchhoff transformation that reduces non-linear to linear equations |14, 8, 9.

2. The partial linearization of the problem using Kirchhoff transformation

We consider a plate homogeneous region  C R? with a simple closed edge I'. The thermal conductivity
A(0) of material object and a heat transfer coefficient with its limits a(6) are continuous functions of
the unknown temperature 6(zx) [1, 2|:

AO) = Xo(1+ Xo(0)S+(0 — 0\)x0), a(f) =ao(l+an(0)S+(0 —0\)xo), (1)
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108 Zhuravchak L. M., Kruk O.S.

where xp is a characteristic function of region €y, 6 > min(fy,60,), S+(2) =1 (z > 0), S4(z) =0
(2 £0), x = (z1,29,23). The behavior of the temperature field, the heat flow and convective heat
exchange with the environment, the temperature of which is 6.(x) are known on the part 0Q° C T' (s =

3
=1,2,3), Y 00 =T. Inside area € heat source fo intensity ¢(x) exists.
s=

To determine the stationary temperature field in € we have a non-linear equation |2]
°. 0 90/(z)
— | ANO)—— ) =— cQCR? 2
;axj( OF) = v, @ , 2)

boundary conditions of the first, second and third kind.

0(x) = Or(x), x € 00, —\(9) gzgg =qr(z), = €0Q?
20(x) 3
a(0)0(x) — \(0) () a(0)f.(x), xe€ 0. (3)
n(x) = (ni(x),n2(x),n3(x)) is outdoor uniquely defined normal to I', ¥(x) is intensity sources in

y C € xy is the area characteristic function y, xy = 1, € Xy, Xy = 0, & Xy-
A well-known direct and inverse Kirchhoff transformation takes place:

0(x)
1
9(w) = K (0 (@) = - [AOdc,
9(0)
and inverse Kirchhoff transformation takes place
K-1(0(x)) = 0(x) (4)
to find ¥(x) we obtain the partially linearized problem:
Ad(z) = —p(z)xy, z€Q, (5)
a) = K(or(@), e cot, —2M0 _ ) v e o0
r ) ) an(x) r ) )
Y (x -1 -1 -1 3
“on() +a(K'0)K (W) = a(K1(9))0.(z), x € 09, (6)

3
where A = > é?; 5 s the Laplace operator, 0 is the characteristic temperature.
i=1"1

We see that the Kirchhoff transformation linearizes the original equation (2) and boundary con-
ditions of the second kind (3), boundary conditions of the first kind are linear, and the boundary
condition of the third kind (3) remain nonlinear.

3. Construction of integral solutions representations of the linear equation and discrete-
continuous model

We use indirect boundary and near-boundary elements methods [4, 6]. We enter at the border I' of
area € and in external to it near-boundary zone G = B\ Q of thickness h (R C BCR3, T NdB = 0,
OB is limit of area B) fictitious heat source unknown intensity o) (z), (@) (z).
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We describe an unknown function by equation

where x-(z) is characteristic function v, that is x,(z) =1 (z € 7), x4(z) =0 (z € 7).
Then Kirchhoff integral image variable as the solution of equations (7) and its normal derivative
are represented as following:

29 (x)

9 (z) = FY(2,U) + Fy(z,U), on(x)

= F(z,Q), (8)

where F7(z,®) = /@(m,f)go(w(ﬁ)d'y(f), Fy(z,®) = /@(m,fﬁb(f)de({"), U(z,§) is fundamental

v Qy
solution of the Laplace operator, which exactly satisfies the equation (5) in Q, & = (£1,&2,&3) € R3,

W (z,§)

‘T 5 n] a Q]( 5) 856]

HMw

We reinforce x in (8) from the middle © to I' to meet the conditions (3), obtain boundary integral
equation (BIE), which links unknown ¢ (¢) with functions specified on I':
F(2,U) = K(0r(x)) — Fyl,U), @ € 001,
Fﬁy(va) :qr(x)_FdJ(va)v {I;G@Qz’ (9)
(K~ (F(2,U) + Fy(a, U)K~ (F7(2,U) + Fy(2,U)) + F'(2,Q)) =
= (K Y (FY(2,U) + Fy(z,0))0.(x) — Fy(z,Q)), =€,
To find the solutions of the system (9) we implemented spatial discretization. We discretize the
region G and limit I' on near-boundary elements G, and boundary elements I', (v =1,...,V) and we

\%
approximate unknown functions (%) (¢ ), S ) by constants d$,dL. However mes G, = I, le G, =

1% 1% |4
=G, dl(aamr) = 00, g+1(aaynr) = 002, U (0G,Nr) = 003, G,NG, = 0, TkNTk = o),
v= v=Vy v=Vv2
Vv o Vi . 1 Vo . 9 i . 3 .
v£w, UT, =T, Uurl,=900", U TI,=00° U T,=00° Itisclear that each boundary
v=1 v=1 v=V1+1 v=Va+1

element should fully belong to one of the sites 9Q° (s = 1,2,3), which are sampled according to
elements V1, Ko, K3, however elements numbering began with the first section and continues to the
next Vo =V + Ko, V=V + Ky + K3.

After spatial discretization we obtain a system of nonlinear algebraic equations (SNLAE).

f(d) =0, d= (d?,...,d"y/), f(d) = (fl(d)’fQ(d)""’fV(d))T’ (10)
\%

d) = ZA;(;CW, U)d) — K(Op (%)) + Fy (2%, U), 2¥ € 09", w=1,..., W,

ZA’Y d _qr( )+Fw($w’Q),(Ew€892’w:‘/1+1’,,,,‘/2’
\%
((Zm U)dy -+ Py (2, U)K A, U)dy + Py (e, )JFZA7 )-
= v=1
\%
( (ZA U)d) + Fy(z ,U))HC(:CW)+F¢(:C”,Q)>,x”€893,w:VQ+1,...,V,
v=1
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¥ €Ty, (w=1,...,V)is a point of collocation, selected as the “center of mass” of boundary element.
For solving SNLAE (10) we use a modified Newton method [7], the essence of this modification is that
at every step of the method is not necessary to calculate the matrix inverse to the Jacobi matrix, in
the corresponding point. Instead we use one and the same inverse matrix calculated at the start point.
As an initial approximation we solve the problem with boundary conditions of the first kind, we get
the SLAE on the first step [5]. The SLAE we solved using Gauss-Newton method.

We obtained solutions of SNLAE d%) | and we using it of the Kirchhoff variable and derivative by
normal:

;
90 (@) =AY V) + Pyl U), ‘%

v=1

|4
= AUz, Q)d}* + Fy(x,Q),  (11)

v=1

where A} (x, ®) = /@(x,g)d%(g). The integrals AS (z,U), AS(x,Q), AL (x,U), at £ = z containing,
Yv
and A} (z,Q) we calculated in Cauchy terms.
In next step, we use the inverse Kirchhoff transformation (4) and (11) to find unknown temperature
and heat flux by the formulas:

90 () v ()

00 () = Kq@(v)(x)), _A(9<v>) o) == @

4. Numerical experiments

For numerical experiments we reviewed an isotropic homogeneous parallelepiped in Cartesian coordi-
nates x1, x9, x3 which occupies an area

0= {(1‘1,1‘2,1‘3) A < < ag,bl < T < bQ,Cl < x3 < 02}

6 .
with limit I" = .U1F(J), where TW |, T'®) is a left border, right border, '®. ™ is a bottom border, top
]:

border, T'®), T®) is a back border and front border of parallelepiped, where a1 = —1, ag = 1, by = —1,
bg = 1, c1 = —1, Cy = 1, h = 0.01.
We used the indirect method of near-boundary elements for the distribution of the thermal field

_p©
with an exponential dependence a thermal conductivity from temperature A(6) = A\g exp <ﬁ )\99%""),

exp

at Ao = 1, By = 0.01, 0% = 100 for the problem of the third kind (3)

Or(x) = 100 + x3, O.(z) = 22 /4 +10.75, x3 =1, O.(z) = 22 /4 + 8.75, x3 = —1, (12)
a(f) =1, zeTW, i=T6, (13)
without inner sources. The results are shown in fig. 1.

We assessed the effect power of inner sources. In the first we evaluated the effect of inner sources
in the plates form

QwQ == {($1,$2,$3)2 —d < Tl < d, Tro = 025, —d < I3 < d}
with intensity

U(z) = g (1 + cos %xl) (1 + cos %352) )

where d = 0.5. The results are shown in fig. 2.
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"HeatExp_withoutInnerSource_.tt" ——

"HeatExp_withoutInnerSource.txt" ——

gaInoInIodoy
WA IO

0.5
-0.5

(a) (b)

Fig. 1. The distribution of the temperature field inside the object on the plane z2 = 0.5 (a) and 2 = —0.5 (b)
for V' = 36 with an exponential dependence without inner sources.

"HeatExp_withInnerSourcePlate+50.txt" —— "HeatExp_withInnerSourcePlate-50.txt" ——

VINUNNITINIVININIOGIOY
FRWATIONOO—N

Fig. 2. The distribution of the temperature field inside the object on the plane zo = 0.5 for V' = 36 with an
exponential dependence for a given inner heat source in the plates form with heating (¢, = 50) (a) and with
cooling (g = —50) (b).

_withInnerSourceParallelepiped+50.6¢" —— "HedtExp_withInnerSourceParallelepiped-50.b¢" ——

VINIUTIVTIVIVITIIAOY
MWDK

Fig. 3. The distribution of the temperature field inside the object on the plane zo = 0.5 for V' = 36 with an
exponential dependence for a given inner heat source in the parallelepiped form with heating (¢, = 50) (a) and
with cooling (¢, = —50) (b).
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In the second we evaluated the effect of inner sources in the 3D form

Quy = {(z1,22,23): —dy <21 < dy, —dy < a9 < dg, —ds < w3 < d3}

{bv(x):%, 1+ cos 2L ) (14 cos 22 ) (1 + cos =22 ,
d; do ds

where di = 0.25, do = d3 = 0.75. The results are shown in fig. 3.

During numerous experiments, when we took solution of the linearized problem for the initial
approximation, then we have not always received convergent iterative process. So we chose for the
initial approximation the solution of linearized problem with boundary conditions of the first kind.
The error e = 0.001 was achieved for the 8 — 10 steps. All numerical results we have got from using an
indirect near-boundary elements method (INBEM), because during the Kirchhoff conversion we got
higher accuracy than indirect boundary element method (IBEM). As you can see, when the internal
heating source (1, = 50) the temperature increases in parallelepiped, and on cooling source (1) = —50)
the temperature decreases.

with intensity

5. Conclusions

We have developed numerical and analytical approach for mathematical modeling of three-dimensional
stationary thermal field, which is based on INBEM, Kirchhoff transformation and a modified Newton’s
method. This approach makes it possible to determine the temperature and heat flow in the heat-
sensitive environment considering its thermal characteristics depending on the unknown temperature.
We confirmed the efficiency of INBEM for solving nonlinear system of boundary integral equations,
which describe the heat conduction process, and allows us to weaken the singularity of the equation
compared to IBEM. Also INBEM simplifies the construction of discrete-continuum models, and sig-
nificantly improves accuracy when calculating the desired values near the body and on the verge of
body. In INBEM all integrals are considered in the Riemann terms (in IBEM calculation of the heat
flux requires the finding integrals in the Cauchy terms). This provided diagonal advantage of SNLAE
elements. The near-boundary region with additional parameter smoothed effect of inner sources, and,
therefore achieved higher than IBEM accuracy using the same number of boundary elements and the
same degree of approximation of unknown intensity. Difference for INBEM method for two and three
dimensional heat conduction problems are mainly seen in form of near-boundary elements and funda-
mental solution of the Laplace equation. Modular construction principle unified software development
part and in the future will allow expand the range of research studies on piecewise homogeneous bodies.
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VYpaxyBaHHs1 HeNiHIWHOT NoBeAiHKU MaTepiany cepefoBuiua Ta

00’EMHNX BHYTPILHIX g>kepen nNpu MateMaTU4HOMY MOAEJ/IIOBaHHI

npouecy TenJonpoBigHOCTI

Kypasuax JI. M1, Kpyx O. C.?2

! Kapnamcore 6iddinenna Incmumymy zeofisuxu im. C. I. Cy66omina HAH Yrpairu
eyxa. Hayxosa, 3-B, 79060, Jlveis, Ykpaina
2 Hayionaavnuti ynieepcumem «JIveiscora noaimernixas
sya. C. Bandepu, 12, 79013, Jlveis, Yxpaina

3anponoHOBAHO YNCEbHO-aHAITHIHY METOIUKY 3HAXO/PKEHHsI TEIJIOBOTO TOJIsg B 0OMe-
JKEHOMY TiJIl 3 ypaxXyBaHHsIM 3aJIe2KHOCTI KOeiI[IEHTIB TEeIIONPOBIIHOCTI Ta TerIoBijiadi
BiJ[ TeMIIEpaTypHu Ta iHTEHCHBHOCTI BHYTpiImHiX jrkepes. OO6rpyHTOBaHO e(peKTHBHICTH
MIOETHAHHS HEMPSAMUX METOJIB I'PAHNIHUX Ta IMPUTPAHUIHUAX €JIEMEHTIB 3 IIepeTBOPEHHIM
Kipxroda mrs gacTkoBoi Jsineapu3ariil HeJIHIHHNX TPUBUMIPHUX 3379 TEILIONPOBiIHOC-
Ti, IKUMHU 3MOJIEJTLOBAHO BKA3aHU MPOTec. 3 BUKOPUCTAHHSIM IHTEIPAJbHUX 300pakeHb
st 3minnaol Kipxroda moby1oBano UCKPETHO-KOHTHHYAJIBHY MOJEIb 331291 3 MIllTaAHIMEI
IPAHUYHUME YMOBAMH IEPIIOrO, JPYroro Ta TPeThOro poiy. JIiiiCHEHO HU3KY OOYHUCIIIO-
BAJIbHUX E€KCIIEPUMEHTIB JIJIsT €KCIIOHEHIIIHOT 3a/1esKHOCT] KoediIlieHTa TelIONpPOBiAHOCTI
Biz TeMItepaTypu, OIiHEHO BILIAB IJIOCKUX Ta 00’€MHUX JIZKepesl Ha PO3IOIiT TEMIIEPATY P-
HOTO TIOJIsI B HapaJiesIerminesi.

Knto4oBi cnoBa: mamepiaiu 13 3aAeoHCHUMY 610 MEMNEPAMYPU TaAPAKMEPUCTIUKAMU,
MENAOBE TOAL, HENPAMULT MEMOO 2PAHUMHUL EAEMERTIE, HENMPAMUL MEMO0 NPUDAHU-
YHUT esemenmis, nepemeoperts Kipxzopa, enympiwmni docepeaa
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